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The human nervous system is capable of simultaneous and integrated control of 100 to 150 mechanical
degrees of freedom of movement in the body via tensions generated by about 700 muscles. In its widest
context, movement is carried out by a sensory-motor system comprising multiple sensors (visual, auditory,
proprioceptive), multiple actuators (muscles and skeletal system), and an intermediary processor which
can be summarized as a multiple-input multiple-output nonlinear dynamic time-varying control system.
This grand control system comprises a large number of interconnected processors and sub-controllers
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at various sites in the central nervous system of which the more important are the cerebral cortex,
thalamus, basal ganglia, cerebellum, and spinal cord. It is capable of responding with remarkable accuracy,
speed (when necessary), appropriateness, versatility, and adaptability to a wide spectrum of continuous
and discrete stimuli and conditions. Certainly, by contrast, it is orders of magnitude more complex
and sophisticated than the most advanced robotic systems currently available — although the latter also
have what are often highly desirable attributes such as precision and repeatability and a much greater
immunity from factors such as fatigue, distraction, and lack of motivation!

This chapter addresses the control function. First, it introduces several important concepts relating
to sensory-motor control, accuracy of movement, and performance resources/capacities. Second, it
provides an overview of apparatuses and methods for the measurement and analysis of complex sensory-
motor performance. The overview focuses on measurement of sensory-motor control performance
capacities of the upper-limbs and by means of tracking tasks.

77.2 Basic Principles

77.2.1 Sensory-Motor Control and Accuracy of Movement

From the perspective of Kondraske’s [Kondraske, 1995a,b] elemental resource model of human perform-
ance, sensory-motor control is the function of the overall sensory-motor control system. This system can
be considered as a hierarchy of multiple interconnected sensory-motor controllers cited in the central
processing and skills (“software”) domains (cf. environmental interface domain, comprising sensors and
actuators, and life sustaining domains) of the elemental resource model. These controllers range from low-
level elemental level controllers for control of movement around single joints, through intermediate-level
controllers needed to generate integrated movements of an entire limb and involving multiple joints and
degrees of freedom, and high-level controllers and processors to enable coordinated synergistic multi-limb
movements and the carrying out of central executive functions concerned with allocation and switching
of resources for execution of multiple tasks simultaneously.

Each of these controllers is considered to possess limited performance resources (PRs) — or perform-
ance capacities — necessary to carry out their control functions. PRs are characterized by dimensions
of performance, which for controllers are accuracy of movement (including steadiness and stability)
and speed of movement. Accuracy is the most important of these and can be divided into four major
classes:

1. Spatial accuracy — Required by tasks which are self-paced and for which time taken is of secondary
or minimal importance and includes tracing (e.g., map-tracking), walking, reaching, and, in fact,
most activities of daily living. Limitation in speed PRs should have no influence on this class of
accuracy.

2. Spatial accuracy with time constraints — Identical to “spatial accuracy” except that, in addition to
accuracy, speed of execution of task is also of importance. Because maximal performance capacities
for accuracy and speed of movement cannot, in general, be realized simultaneously, the carrying
out of such tasks must necessarily involve speed-accuracy tradeoffs [Fitts, 1954; Fitts and Posner,
1967]. The extent to which accuracy is sacrificed for increased speed of execution, or vice versa, is
dependent on the perceived relative importance of accuracy and speed.

3. Temporal accuracy — Required by tasks which place minimal demands on positional accuracy and
includes single and multi-finger tapping and foot tapping.

4. Spatiotemporal accuracy — Required by tasks which place considerable demand on attainment of
simultaneous spatial and temporal accuracy. This includes paced positional tasks such as tracking,
driving a vehicle, ball games and sports, and video games. It should be stressed, however, that
most of the above self-paced tasks also involve a considerable interrelationship between space
and time.
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Tracking tasks have become well established as being able to provide one of the most accurate and flex-
ible means for laboratory-based measurement of spatiotemporal accuracy and, thus, of the performance
capacity of sensory-motor control or sensory-motor coordination. In addition, they provide an unsur-
passed framework for studies of the underlying control mechanisms of motor function [e.g., Lynn et al.,
1979; Cooper et al., 1989; Neilson et al., 1993, 1995, 1998] — the potential for which was recognized as
early as 1943 as seen in writings by Craik [1966]. They have achieved this status through their (a) ability to
maximally stress the accuracy dimension of performance and, hence, the corresponding control PR, (b)
the continuous nature and wide range of type and characteristics of input target signals they permit, (c)
facility for a wide range of 1-D and 2-D sensors for measuring a subject’s motor output, and (d) measure
of continuous performance (cf. reaction time tests).

From this perspective, it will be of little surprise to find that tracking tasks are the primary thrust of
this chapter.

77.2.2 The Influence of Lower-Level Performance Resources on
Higher-Level Control Performance Resources

By their very nature, tasks which enable one to measure spatiotemporal accuracy are complex or
higher-level sensory-motor tasks. These place demands on a large number of lower-level PRs such as
visual acuity, dynamic visual perception, range of movement, strength, simple reaction times, acceler-
ation/deacceleration, static steadiness, dynamic steadiness, prediction, memory, open-loop movements,
concentration span, attention switching, that is, central executive function or supervisory attentional
system (multitask abilities), utilization of preview, and learning.

Itis, therefore, important to ask: If there are so many PRs involved in tracking, can tracking performance
provide an accurate estimate of sensory-motor control performance capacities? Or, if differences are seen
in tracking performance between subjects, do these necessarily indicate comparable differences in control
performance capacities? Yes, they can, but only if the control resource is the only resource being maximally
stressed during the tracking task. Confirmation that the other PRs are not also being maximally stressed
for a particular subject can be ascertained by two means. First, by independently measuring the capacity
of the other PRs and confirming that these are considerably greater than that determined as necessary for
the tracking task in question. For example, if the speed range for a certain reference group on a nontarget
speed test is 650 to 1250 mm/sec and the highest speed of a tracking target signal is 240 mm/sec, then one
can be reasonably confident that intra-group differences in performance on the tracking task are unrelated
to intra-group differences in speed. Second, where this process is less straightforward or not possible, it
may be possible to alter the demands imposed by the task on the PR in question. For example, one could see
whether visual acuity was being maximally stressed in a tracking task (and hence, be a significant limiting
factor to the performance obtained) by increasing or decreasing the eye-screen distance. Similarly, one
could look at strength in this context by altering the friction, damping, or inertia of the sensor, or at range
of movement by altering the gain of the sensor.

The conclusion that a task and a PR are unrelated for a particular group does not, of course, mean
that this can necessarily be extrapolated to some other group. For example, strength may be completely
uncorrelated with tracking performance in normal males yet be the primary factor responsible for poor
tracking performance by the paretic arm of subjects who have suffered a stroke.

The foregoing discussion is based on the concept of a assumption that if a task requires less than
the absolute maximum available of a particular PR then performance on that task will be independent
of that PR. Not surprisingly, the situation is unlikely to be this simplistic or clear-cut! If, for example,
a tracking task places moderate sub-maximal demands on several PRs, these PRs will be stressed to
varying levels such that the subject may tend to optimize the utilization of those resources [Kondraske,
1995a,b] so as to achieve an acceptable balance between accuracy, speed, stress/effort, and fatigue (physical
and cognitive). Thus, although strength available is much greater than strength needed (i.e., Resource
available > Resource demand) for both males and females, could the differential in strength be responsible
for males performing better on tracking tasks than females? [Jones et al., 1986].

© 2006 by Taylor & Francis Group, LLC



77-4 Biomedical Engineering Fundamentals

77.3 Measurement of Sensory-Motor Control Performance

77.3.1 Techniques: An Overview

Tracking tasks are the primary methodological approach outlined in this chapter for measurement of
sensory-motor control performance. There are, however, a large number of other approaches, each
with their own set of apparatuses and methods, which can provide similar or different data on control
performance. It is possible to give only a cursory mention of these other techniques in this chapter (see
also Further Information).

Hand and foot test boards comprising multiple touch-plate sensors provide measures of accuracy and
speed of lateral reaching-tapping abilities [Kondraske et al., 1984, 1988].

Measurement of steadiness and tremor in an upper-limb, lower-limb, or segment of either, particularly
when sustended, can be made using variable size holes, accelerometers, or force transducers [Potvin et al.,
1975]. A dual-axis capacitive transducer developed by Kondraske et al. [1984] provides an improved means
of quantifying steadiness and tremor due to it requiring no mechanical connection to the subject (i.e.,
no added inertia) and by providing an output of limb position as opposed to less informative measures
of acceleration or force. Interestingly, tests of steadiness can be appropriately considered as a category of
tracking tasks in which the target is static. The same is also true for measurement of postural stability
using force balance platforms, whether for standing [Kondraske et al., 1984; Milkowski et al., 1993] or
sitting [Riedel et al., 1992] (see also Further Information).

77.3.2 Tracking Tasks: An Overview

A tracking task is a laboratory-based test apparatus characterized by a continuous input signal — the
target — which a subject must attempt to match as closely as possible by his/her output response by
controlling the position of (or force applied to) some sensor. It provides unequalled opportunities for wide-
ranging experimental control over sensors, displays, target signals, dimensionality (degrees of freedom),
control modes, controlled system dynamics, and sensor-display compatibility, as well as the application
of a vast armamentarium of linear and non-linear techniques for response signal analysis and systems
identification. Because of this, the tracking task has proven to be the most powerful and versatile tool
for assessing, studying, and modelling higher-level functioning of the human “black-box” sensory-motor
system.

There are three basic categories of tracking tasks differing primarily in their visual display and in
the corresponding control system (Figure 77.1). The pursuit task displays both the present input and
output signals, whereas the compensatory task displays only the difference or error signal between these.
The preview task [Poulton, 1964; Welford, 1968; Jones and Donaldson, 1986] (Figure 77.2) is similar
to the pursuit task except that the subject can see in advance where the input signal is going to be and
plan accordingly to minimize the resultant error signal. Tracing tasks [Driscoll, 1975; Stern et al., 1983;
Hocherman and Aharon-Peretz, 1994] are effectively self-paced 2-D preview tracking tasks.

The input-output nature of tracking tasks has made them most suitable for analysis using engineering
control theories. This has led to the common view of pursuit tracking as a task involving continuous
negative feedback [Notterman et al., 1982] but there is evidence that tracking viewed as a series of discrete
events would be more appropriate [Bosser, 1984; Neilson et al., 1988]. The inclusion of preview of the input
signal greatly complicates characterization of the human controller and Sheridan [1966] has suggested
three models of preview control which employ the notions of constrained preview and nonuniform
importance of input. Lynn et al. [1979] and Neilson et al. [1992] have also demonstrated how, by treating
the neurologically impaired subject as a black-box, control analysis can lead to further information on
underlying neurological control mechanisms.

Despite the wide-spread utilization and acceptance of tracking tasks as a powerful and versatile means
for quantifying and studying sensory-motor control capacities, there is little available on the market in
this area. The most obvious exception to this is the photoelectric pursuit rotor which is ubiquitous in the
motor behavior laboratories of university psychology departments and has been available since the 1950s
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FIGURE 77.1 Modes of tracking (i) Compensatory: subject aims to keep resultant error signal X
(= input signal-output signal = s;(t) — s,(f)) on stationary vertical line. (ii) Pursuit: subject aims to keep his
output signal X, s,(t), on the target input signal O, s;(t). (iii) Preview: subject aims to keep his output signal X,
s0(), on the descending target input signal, [s;(t + Tp) — si(t — Ty,)] (where ¢t = present time, T;, = preview time,
Ti, = history or postview time).

FIGURE 77.2 Visual display for random tracking with a preview of 8.0 sec and postview of 1.1 sec.

[Welford, 1968; Schmidt, 1982; Siegel, 1985]. It is a paced 2-D task with a target with the periodic on each
revolution. Although inexpensive, the pursuit rotor is a crude tracking task allowing limited control over
target signals and possessing a very gross performance analysis in terms of time on target. Thus nearly all
of the many and varied tracking tasks which have been used in countless experimental studies around the
world have been developed by the users themselves for their specific objectives.

An improvement in this situation has occurred recently with the arrival on the market of a number
of tracking devices from Human Performance Measurement, Inc. (Arlington, TX). These devices are a
natural extension of those developed by Kondraske et al. [1984]. Off-the-shelf availability of computer-
based tracking tests, including sensors for both upper- and lower-limbs, opens up the possibility of a
much broader and widespread use of tracking tasks. In particular, one can look forward to a much
greater utilization of tracking tasks outside of traditional research areas and in more routine assessment
applications in clinical, rehabilitative, vocational, sports, and other environments.

© 2006 by Taylor & Francis Group, LLC



77-6 Biomedical Engineering Fundamentals

77.3.3 Tracking Tasks: Options and Considerations

Whatever the reasons for needing quantification of sensory-motor control capacity via a tracking task,
there are a number of options available and factors to be considered in choosing or designing a
tracking task.

77.3.3.1 Sensors

Sensors for measuring a subject’s motor output in 1-D tracking tasks can be categorized under (a)
movements involving a single degree of freedom such as flexion-extension rotation around a single joint
including elbow [Lynn et al., 1977; Deuschl et al., 1996; O’ Dwyer et al., 1996; Soliveri et al., 1997], wrist
[Johnson et al., 1996], or a finger, or pronation-supination of the wrist, and (b) movements involving two
or more degrees of freedom of a body part (e.g., hand) — that is, coordinated movement at multiple joints
— which are either 1-D, such as some form of linear transducer [Patrick and Mutlusoy, 1982; Baroni et al.,
1984; van den Berg et al., 1987] or 2-D, such as steering wheel [Buck, 1982; Ferslew et al., 1982; Jones
and Donaldson, 1986; Jones et al., 1993], stirring wheel [De Souza et al., 1980], position stick (i.e., 1-D
joystick) [Potvin et al., 1977; Neilson and Neilson, 1980; O’ Dwyer and Neilson, 1998], joystick [Kondraske
et al., 1984; Miall et al., 1985; Jones et al., 1993], finger-controlled rotating knob [Neilson et al., 1993],
and light-pen [Neilson and Neilson, 1980]. Force sticks, utilizing strain-gauge transducers mounted on a
cantilever, are also commonly used as sensors [Garvey, 1960; Potvin et al., 1977; Miller and Freund, 1980;
Barr et al., 1988; Stelmach and Worrington, 1988]. Isometric integrated EMG (i.e., full-wave rectification
and low-pass filtering of the raw EMG) can also be used to control the tracking response cursor, as was
done by Neilson et al. [1990] to help show that impairment of sensory-motor learning is the primary
cause of functional disability in cerebral palsy.

Sensors for 2-D tasks must, of course, be capable of moving with and recording two degrees of freedom.
Joysticks are commonly used for this and range in size from small, for finger movement [Anderson, 1986]
and wrist/forearm movement [Bloxham et al., 1984; Frith et al., 1986; Neilson et al., 1998], up to large
floor-mounted joysticks for arm movements primarily involving shoulder and elbow function [Kondraske
et al., 1984; Anderson, 1986; Behbehani et al., 1988; Jones et al., 1993; Dalrymple-Alford et al., 1994;
Watson et al., 1997; Watson and Jones, 1998]. Other 2-D task sensors include a hand-held stylus for the
photoelectric pursuit rotor [Schmidt, 1982; Siegel, 1985], plexiglass tracing [Driscoll, 1975], and tasks
utilizing sonic digitizers [Stern et al., 1984; Viviani and Mounoud, 1990; Hocherman and Aharon-Peretz,
1994]. Abend et al. [1982] and Flash and Hogan [1985] used a two-joint mechanical arm to restrict hand
movements to the horizontal plane in the investigation of CNS control of two-joint (shoulder and elbow)
movements in trajectory formation. Stern et al. [1983] simply used the subject’s finger as the sensor for a
tracing task on a vertical plexiglass “screen”; a video camera behind the screen recorded finger movements.
Novel “whole-body” 2-D tracking is also possible by having subjects alter their posture while standing on
a dual-axis force platform [Kondraske et al., 1984].

1-D sensors can also be used in 2-D tasks by way of bimanual tracking. For example, O’'Dwyer and
Neilson [1995] used two 1-D joysticks to investigate dynamic synergies between the right and left arms.

77.3.3.2 Displays

Early tracking devices used mechanical-based displays such as a rotating smoked drum [Vince, 1948], the
ubiquitous pursuit rotor, and a paper-strip preview task [Poulton, 1964; Welford, 1968]. An oscilloscope
was, and still is to a much less degree, used in a large number of tracking tasks, initially driven by analog
circuitry [Flowers, 1976; Anderson, 1986] but later by D/A outputs on digital computers [Kondraske et al.,
1984; Miall et al., 1985; Sheridan, M.R. et al., 1987; Cooper et al., 1989]. Standard raster-based television
screens have been used by some workers [Potvin etal., 1977; Beppu et al., 1984]. Non-raster vector graphics
displays, such as Digital Equipment’s VT11 dynamic graphics unit, proved valuable during the PDP-era
as a means for generating more complex dynamic stimuli such as squares [Neilson and Neilson, 1980;
Frith et al., 1986] and preview [Jones and Donaldson, 1986] (Figure 77.2). More recently, raster-based
color graphics boards have allowed impressive static displays and simple dynamic tracking displays to be
generated on PCs. However, such boards are not, in general, immediately amenable for the generation of
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flawless dynamic displays involving more complex stimuli, such as required for preview tracking. Jones
et al. [1993] have overcome this drawback by the use of specially-written high-speed assembly-language
routines for driving their display. These generate a display of the target and the subject’s response marker
by considering the video memory (configured in EGA mode) as four overlapping planes, each switchable
(via a mask), and each capable of displaying the background color and a single color from a palette.
Two planes are used to display the target, with the remaining two being used to display the subject’s
pointer. The current target is displayed on one target plane, while the next view of the target, in its new
position, is being drawn on the other undisplayed target plane. The role of the two planes is reversed
when the computer receives a vertical synchronization interrupt from the graphics controller indicating
the completion of a raster. Through a combination of a high update-rate of 60.34 Hz (i.e., the vertical
interrupt frequency), assembly language, and dual display buffers, it has been possible to obtain an
extremely smooth dynamic color display. Their system for tracking and other quantitative sensory-motor
assessments is further enhanced through its facility to generate dynamic color graphics on two high-
resolution monitors simultaneously: one for the tracking display, and one for use by the assessor for task
control and analysis. The monitors are driven by a ZX1000 graphic controller (Artist Graphics Inc), at
800 x 600, and a standard VGA controller, respectively.

In contrast to the above CRT-based displays, Warabi et al. [1986] used a laser-beam spot to indicate a
subject’s hand position together with a row of LEDs for displaying a step target. Similarly, Gibson et al.
[1987] used a galvonometer-controlled laser spot to display smooth and step stimuli on a curved screen
together with a white-light spot controlled by subject. Leist et al. [1987], Viviani and Mounoud [1990],
and Klockgether [1994] also used galvonometer-controlled spots but via back-projection onto a curved
screen, transparent digitizing table, and plexiglass surface respectively. Van den Berg et al. [1987] used two
rows of 240 LEDs each to display target and response. 2-D arrays of LEDs have also been used to indicate
step targets in 2-D tracking tasks [Abend et al., 1982; Flash and Hogan, 1985].

77.3.3.3 Target Signals

Tracking targets cover a spectrum from smoothly-changing (low-bandwidth) targets, such as sinusoidal
and random, through constant velocity ramp targets, to abrupt changing step targets.

77.3.3.4 Sinusoidal Targets

The periodicity, constancy of task complexity (over cycles), and spectral purity of sine targets make them
valuable for measurement of within-run changes in performance (e.g., learning, lapses in concentration)
[Jones and Donaldson, 1981], the study of ability to make use of the periodicity to improve tracking
performance [Jones and Donaldson, 1989], and the study of the human frequency response [Leist et al.,
1987]. Several other workers have also used sine targets in their tracking tasks [Potvin et al., 1977; Miller
and Freund, 1980; Ferslew et al., 1982; Notterman et al., 1982; Johnson et al., 1996; Soliveri et al., 1997].

Bloxham et al. [1984] and Frith et al. [1986] extended the use of sinewaves into a 2-D domain by having
subjects track a moving circle on the screen.

77.3.3.5 Random Targets

These are commonly generated via a sum of sines approach in which a number of harmonically or non-
harmonically related sinusoids of random phase are superimposed [Cassell, 1973; Neilson and Neilson,
1980; Miall et al., 1985; Baddeley et al., 1986; Frith et al., 1986; van den Berg et al., 1987; Barr et al.,
1988; Cooper et al., 1989; Jones et al., 1993; Hufschmidt and Liicking, 1995; Watson et al., 1997; Watson
and Jones, 1998]. If harmonically related, this can effectively give a flat spectrum target out to whatever
bandwidth is required. Thus, in Jones et al.’s [Jones et al., 1993; Watson et al., 1997; Watson and Jones,
1998] system the random signal generation program asks the user for the required signal bandwidth and
then calculates the number of equal amplitude harmonics that must be summed together to give this
bandwidth, each harmonic being assigned a randomly selected phase from a uniform phase distribution.
Each target comprises 4096 (2!2) or more samples, a duration of at least 68 sec (4096 samples/60.34 Hz),
and a fundamental frequency of 0.0147 Hz (i.e., period of 68 sec). By this means it is possible to have
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several different pseudo-random target signals that are non-periodic up to 68 sec duration, have flat
spectra within a user specified bandwidth, no components above this bandwidth, and whose spectra
can be accurately computed by FFT from any 68 sec block of target (or response). Another common
approach to the generation of random targets is to digitally filter a sequence of pseudo-random numbers
[Lynn et al., 1977; Potvin et al., 1977; Kondraske et al., 1984; van den Berg et al., 1987; Neilson et al.,
1993] although this method gives less control over the spectral characteristics of the target. B’sser [1984]
summed a number of these filtered sequences in such a way as to generate a target having an approximate 1/f
spectrum. Another smooth pursuit target was generated by linking together short segments of sinewaves
with randomly selected frequencies up to some maximum [Gibson et al., 1987] and was thus effectively a
hybrid sinusoidal-random target.

77.3.3.6 Ramp Targets

These have been used in conjunction with sensory gaps of target or response to study predictive tracking
and ability to execute smooth constant velocity movements in the absence of immediate visual cues in
normal subjects [Flowers, 1978b] and subjects with cerebellar disorders [Beppu et al., 1987], stroke [Jones
et al., 1989], and Parkinson’s disease [Cooke et al., 1978; Flowers, 1978a].

77.3.3.7 Step Targets

These have been used in many applications and studies to measure and investigate subjects’ abilities to
predict, program, and execute ballistic (open-loop) movements. To enable this, spatial and temporal
unpredictability have been incorporated into step tasks in various ways:

e Temporal predictability — The time of onset of steps has ranged from (a) explicitly predictable,
with preview of the stimulus [Day et al., 1984; Jones et al., 1993], (b) implicitly predictable, with
fixed interval between steps [Potvin et al., 1977; Cooke et al., 1978; Flowers, 1978; Abend et al.,
1982; Deuschl et al., 1996; Johnson et al., 1996], to (c) unpredictable, with intervals between steps
varied randomly over spans lying somewhere between 1.5 and 7.0 sec [Angel et al., 1970; Flowers,
1976; Baroni et al., 1984; Kondraske et al., 1984; Anderson, 1986; Jones and Donaldson, 1986;
Warabi et al., 1986; Gibson et al., 1987; Sheridan et al., 1987; Jones et al., 1993; Neilson et al., 1995;
Watson et al., 1997; O’'Dwyer and Neilson, 1998].

e Amplitude predictability — The amplitude of steps has ranged from (a) explicitly predictable,
where the endpoint of the step is shown explicitly before it occurs [Abend et al., 1982; Baroni
et al., 1984; Sheridan et al., 1987; Jones et al., 1993; Deuschl et al., 1996; Watson et al., 1997],
(b) implicitly predictable, where all steps have the same amplitude [Angel et al., 1970; Potvin
et al., 1977; Cooke et al., 1978; Day et al., 1984; Kondraske et al., 1984; Anderson, 1986; Johnson
etal.,, 1996; O’'Dwyer and Neilson, 1998] or return-to-centre steps in variable-amplitude step tasks
[Flowers, 1976; Jones and Donaldson, 1986; Jones et al., 1993], to (c) unpredictable, with between
2 and 8 randomly distributed amplitudes [Flowers, 1976; Jones and Donaldson, 1986; Warabi et al.,
1986; Gibson et al., 1987; Sheridan et al., 1987; Jones et al., 1993].

e Direction predictability — Previous step tasks have had steps whose direction of steps has ranged
from (a) all steps explicitly predictable, alternating between right and left [Flowers, 1976; Potvin
et al., 1977; Cooke et al., 1978; Baroni et al., 1984; Kondraske et al., 1984; Deuschl et al., 1996;
Johnson et al., 1996; O’Dwyer and Neilson, 1998], or all in one direction (i.e., a series of discon-
tinuous steps) [Sheridan et al., 1987], or between corners of an invisible square [Anderson, 1986],
or having preview [Abend et al., 1982; Jones et al., 1993], (b) most steps predictable but with
occasional “surprises” for studying anticipation [Flowers, 1978a], (c) a combination of unpredict-
able (outward) and predictable (back-to-center) steps [Angel et al., 1970; Jones and Donaldson,
1986; Jones et al., 1993; Watson et al., 1997], and (d) all steps unpredictable, with multiple end-
points [Warabi et al., 1986; Gibson et al., 1987] or resetting between single steps [Day et al.,
1984].
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TABLE 77.1 Unpredictability in Step Tracking Tasks

Temporal Spatial-Amplitude Spatial-Direction

Overall
Full Partial None Full Partial None Full Partial None Full

Angel et al. [1970]* 1-D e . . °
Flowers [1976]2 1-D o . . .
Potvin et al. [1977] 1-D . .
Cooke et al. [1978] 1-D . .
Flowers [1978a] 1-D . .

Baroni et al. [1984] 1-D ° ° .
Day et al. [1984] 1-D . . °

Kondraske et al. [1984] 1-D e ° .
Warabi et al. [1986] 1-D . . °

Jones and Donaldson [1986]2 1-D e ° . ° .
Gibson et al. [1987]2 1-D e . .

Sheridan et al. [1987]2 1-D o . . .
Jones et al. [1993]2 1-D . . . . . . ° °
Deuschl et al. [1996] 1-D . . .
Johnson et al. [1996]2 1-D . . .
O’Dwyer and Neilson [1998]  1-D e . °
Abend et al. [1982] 2-D . . .
Anderson [1986] 2D e . °
Watson et al. [1997] 2-D ° . .

2Several authors have several variations of unpredictability within one task or between multiple tasks.

The three elements of unpredictability can be combined in various ways to generate tasks ranging from
completely predictable to completely unpredictable (Table 77.1). Several groups have implemented several
variations of unpredictability both within and between step tracking tasks to investigate the possible loss
of ability to use predictability to improve performance in, for example, Parkinson’s disease [Flowers, 1978;
Sheridan et al., 1987; Watson et al., 1997]. In addition to unpredictability, other characteristics can be built
into step tasks including explicit target zones [Sheridan et al., 1987] and visual gaps in target [Flowers,
1976; Warabi et al., 1986].

An example of a 1-D step tracking task possessing full spatial and temporal unpredictability is that
of Jones and colleagues [Jones and Donaldson, 1986; Jones et al., 1993] (Figure 77.3a). The task
comprises 32 abrupt steps alternating between displacement from and return to center screen. In the
non-preview form, spatial unpredictability is present in the outward steps through four randomly dis-
tributed amplitude/direction movements (large and small steps requiring 90 and 22.5 deg. on a steering
wheel respectively, and both to right and left of center) with temporal unpredictability achieved via four
randomly distributed durations between steps (2.8, 3.4, 4.0, 4.6 sec). This task has been used, together
with preview random tracking, to demonstrate deficits in sensory-motor control in the asymptomatic
arm of subjects who have had a unilateral stroke [Jones et al., 1989].

Watson and Jones [1997] also provide an example of a 2-D step tracking task with spatial and temporal
unpredictability. In this task the subject must move a cross from within a central starting square to
within one of eight 10 mm x 10 mm target squares that appear on the screen with temporal and spatial
unpredictability (Figure 77.3b). The centers of the eight surrounding targets are positioned at the vertices
and midway along the perimeter of an imaginary 100 mm x 100 mm square centered on the central
square. To initiate the task, the subject places the cross within the perimeter of the central target. After a
2-5 sec delay, one of the surrounding blue targets turns green and the subject moves the cross to within
the green target square as quickly and as accurately as possible. After a further delay, the central target
turns green indicating onset of the spatially predictive “back-to-center” target. The task, which comprises
ten outward and ten return targets, was used to show that Parkinsonian subjects perform worse than

© 2006 by Taylor & Francis Group, LLC



77-10 Biomedical Engineering Fundamentals

(a) (b)
: o O O

o O O

1 o O 0O

FIGURE 77.3 Visual displays for (a) 1-D step tracking task and (b) 2-D step tracking task (bottom-right square is
current target).
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FIGURE 77.4 Section of input waveform in combination tracking in which the target alternates between preview-
random and nonpreview-step.

matched controls on all measures of step tracking but are not impaired in their ability to benefit from
spatial predictability to improve performance.

Step tasks with explicit target zones, in 1-D [Sheridan et al., 1987] or 2-D [Watson et al., 1997], provide
the possibility of altering task difficulty by varying the size of the target. On the basis that subjects need
only aim to get their marker somewhere within target zone (cf. close to center) then, according to Fitt’s
[1954] ratio rule, the difficulty of the primary movement is proportional to log,(2A/W), where A is the
amplitude of the movement and W is the width of the target.

77.3.3.8 Combination Targets

Jones et al. [1986, 1989, 1993] have combined two quite different modes of tracking within a single task.
Combination tracking involves alternating between preview random and non-preview step tracking over
11 sec cycles (Figure 77.4). Thus, while tracking the random target, the preview signal is abruptly and
unpredictably replaced by a stationary vertical line at some distance from the random signal, and vice
versa. Although the steps occur with a fixed foreperiod (as with the step tasks listed above with implicit
temporal predictability) of 7.3 sec, subjects are not informed of this and, irrespective, Weber’s law [Fitts
and Posner, 1967] indicates the accuracy of prediction of steps with such a long pre-stimulus warning is
very low. Combination tracking allows the study of ability to change motor set [Robertson and Flowers,
1990] between quite different modes of tracking and is analogous to having to quickly and appropriately
respond to an unexpected obstacle, such as a child running onto the road, while driving a vehicle.
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77.3.3.9 Dimensionality

The number of dimensions of a tracking task usually refers to the number of cartesian coordinates over
which the target moves, rather than those of the response marker or sensor handle, or the number of
degrees of freedom of the target or of the upper-limb. Some examples (1) Most tasks with a 2-D joystick
sensor or light-pen are 2-D but, if the target moves in the vertical direction only [Neilson and Neilson,
1980; Kondraske et al., 1984; Miall et al., 1985; Jones et al., 1993], the task is only considered 1-D,
irrespective of whether the response marker is confined to vertical movements on the screen or not; (2)
If the target trajectory is a circle [Bloxham et al., 1984], the task is 2-D despite the target having only
one degree of freedom (i.e., radius r is constant); (3) A pursuit rotor is a 2-D task as it has a target
which moves in two dimensions (whether cartesian or polar) as well as doing so with two degrees of
freedom.

Watson and Jones [1998] compared random 2-D with 1-D performance but in doing so scaled their
2-D target down so as to have an average displacement and velocity equal to that of its 1-D horizontal and
vertical components. By this means they were able to unequivocally demonstrate that there is poorer per-
formance on 2-D tasks and that is due to both the increased dimensionality and increased position/speed
demands of an unscaled 2-D task.

Dual-axis tracking is a variant of 2-D tracking in which the 2-D task comprises two simultaneous
orthogonal 1-D tasks in which one or more of the target, input device, control dynamics, and on-line
feedback are different between the two axes. It has been used to investigate mechanisms and characteristics
of 2-D tracking, such as whether it is a single task or two separate orthogonal tasks [Navon et al., 1984;
Fracker and Wickens, 1989].

77.3.3.10 Tracking Mode

The two primary modes of tracking — compensatory and pursuit — have been introduced above. The
majority of tasks are of the pursuit type which is appropriate in that has a more direct parallel with
real-world sensory-motor tasks than the more artificial compensatory task [Vince, 1948; Garvey, 1960;
Potvin et al., 1977; Miller and Freund, 1980; B’sser, 1984; Barr et al., 1988] in which the subject is only
shown the instantaneous value of the error signal. The compensatory mode may be preferentially chosen
for control-theory modelling due to its simpler set of defining equations [Potvin et al., 1977]. The preview
task [Welford, 1968; Jones and Donaldson, 1986] is an important variation of pursuit tracking in which a
still greater correspondence with everyday tasks is achieved.

77.3.3.11 Controlled System Dynamics

It has been well established that subjects can deal satisfactorily with a variety of tracking systems incor-
porating different control characteristics [Poulton, 1974; Neilson et al., 1995]. That notwithstanding, the
majority of tracking tasks have a zero-order controlled system in which the position of the response marker
is proportional to the position of the sensor and the mechanical characteristics of friction, inertial mass,
and velocity damping are simply those of the input device. Van den Berg et al. [1987] eliminated even these
by feeding back a force signal from a strain gauge on the tracking handle to the power amplifier of a torque
motor connected to their sensor. Conversely, Neilson et al. [1993] artificially introduced mechanical char-
acteristics into the movement of their response marker by having a linear 2nd-order filter as the controlled
system; by an appropriate transfer function (H(z) = 0.4060/(1 — 1.0616z~! + 0.4610z72)), they were
able to introduce inertial lag and underdamping (resonant peak at 2.0 Hz). Miall et al. [1985] introduced
an analog delay of 500 msec between their joystick and display so that they could study the effect of
delayed visual feedback on performance. Soliveri et al. [1997] used both Ist-order (velocity) and zero-
order (position) linear control dynamics to investigate differences in learning between parkinsonian and
control subjects and between on- and off-medication. Navon et al. [1984] used a combination of velocity
and acceleration control dynamics in their study on dual-axis tracking. Nonlinear transfer functions, such
as 2nd-order Volterra (fading memory) nonlinearities, have also been used in tracking controlled systems,

© 2006 by Taylor & Francis Group, LLC



77-12 Biomedical Engineering Fundamentals

primarily as a means for investigating adaptive inverse modelling mechanisms in the brain relating to
voluntary movement [Sriharan, 1997; Davidson et al., 1999].

Controlled system dynamics can also be changed during a task. In “critical tracking,” a novel variation
of pursuit tracking conceived by Jex [1966], the delay of the controlled system increases during the task.
There is no external target but instead the subject’s own instability acts as an input to an increasingly
unstable controlled system, Y (s) = K8/(s — 8), in which the level of instability, represented by the root
8(= 1/T),is steadily increased during the task until a preset error is exceeded. The task has been described
as analogous to driving a truck with no brakes down a hill on a winding road [Potvin et al., 1977]. The
task has been applied clinically by Potvin et al. [1977] and Kondraske et al. [1984] and shown to be
a reliable measure of small changes in neurological function [Potvin et al., 1977]. Alternatively, “gain-
change step tracking” [Neilson et al., 1995], in which the gain of the control-display relation is increased
or decreased without warning, has been used to investigate adaptive mechanisms in the brain [O’Dwyer
and Neilson, 1998].

Having a torque motor as part of the sensor opens up several new possibilities. It can be operated as a
“torque servo,” in which applied torque is independent of position [Kondraske et al., 1984], or a “position
servo,” in which applied torque is proportional to position error (together with velocity damping if
desired) [Thomas et al., 1976]. By adding external force perturbations, it is possible to measure and
study neuromuscular reflexes and limb transfer function (i.e., stiffness, viscosity, and inertia), such as by
applying constant velocity movements [Kondraske et al., 1984] or pulsatile [van den Berg et al., 1987],
sinusoidal [Gottlieb et al., 1984], or random [Kearney and Hunter, 1983; van den Berg et al., 1987] force
perturbations. Alternatively, the torque motor can be used to alter controlled system characteristics in
tracking tasks for studies and/or improvement of voluntary movement. For example, van den Berg et al.
[1987] cancelled unwanted controller characteristics. Chelette et al. [1995] used “force reflection” to
improve tracking performance in both normal subjects and those with spasticity, and Johnson et al. [1996]
used anti-viscous loading to investigate the cause of poor tracking in patients with Parkinson’s disease.

77.3.3.12 Sensor-Display Compatibility

It is generally accepted that the level of compatibility between sensor and display in continuous tracking
tasks influences the accuracy of performance [Neilson and Neilson, 1980]. The perfectly compatible
sensor is the display marker itself [Poulton, 1974] where the subject holds and moves the response
marker directly such as with a light-pen in tracking [Neilson and Neilson, 1980], rotary pursuit [Schmidt,
1982; Welford, 1968], handle on a two-joint mechanical arm [Abend et al., 1982], or in self-paced
2-D tracing tasks [Driscoll, 1975; Stern et al., 1984; Hocherman and Aharon-Peretz, 1994]. Similarly,
van den Berg et al. [1987] achieve a high sensor-display compatibility by having the LED arrays for
target and response displayed directly above a horizontally-moving handle. However, the majority of
tracking tasks have sensors which are quite separate from the response marker displayed on an oscilloscope
or computer screen. Sensor-display compatibility can be maximized in this case by having the sensor
physically close to the display, moving in the same direction as the marker, and with a minimum of
controlled system dynamics (e.g., zero-order). In the case of a joystick in a 2-D task, for example, direct
compatibility (Left—Right — Left—Right) is easier than inverse compatibility (Left—Right — Right—Left),
which is easier than non-compatibility (Left—Right — Up—Down). In contrast, fore-aft movements on a
joystick appear to possess bidirectional compatibility in that Fore-aft — Up—Down seems as inherently
natural as Fore—aft — Down-Up (i.e., no obvious inverse).

Sensor-display compatibility may not, however, be overly critical to performance. For example, Neilson
and Neilson [1980] found no decrement in performance on random tracking of overall error scores, such
as mean absolute error, between a light pen and a 1-D joystick; nevertheless, the latter did result in a
decrease in gain, an increase in phase lag, and an increase in the non-coherent response component.
Conversely, normal subjects find incompatible 2-D tracking very difficult to perform, taking up to 4 h
of practice to reach a level of performance equal to that seen on prepractice 2-D compatible tracking
[Neilson et al., 1998].
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77.3.3.13 Response Sampling Rates

Although some workers have manually analyzed tracking data from multichannel analog chart recordings
[Flowers, 1976; Beppu et al., 1984] or analog processed results [Potvin et al., 1977], the majority have
used computers, sometimes via a magnetic tape intermediary [Day et al., 1984; Miall et al., 1985], to
digitize data for automated analyses. Sampling rates used have varied from 10 Hz [Neilson and Neilson,
1980], through 20 Hz [Cooper et al., 1989; Neilson et al., 1993; Neilson et al., 1998], 28.6 Hz [Jones and
Donaldson, 1986], 30.2 Hz [Watson et al., 1997; Watson and Jones, 1998], 40 Hz [Frith et al., 1986], 60 Hz
[Viviani and Mounoud, 1990], 60.3 Hz (= screen’s vertical interrupt rate) [Jones et al., 1993], 66.7 Hz
[O’Dwyer and Neilson, 1998], 100 Hz (all 2-D tasks) [Abend et al., 1982; Stern et al., 1984; Hocherman
and Aharon-Peretz, 1994], to as high as 250 Hz [Day et al., 1984].

For the most part, a relatively low sampling rate is quite satisfactory for analysis of tracking performance
aslong as the Nyquist criterion is met and there is appropriate analog or digital low-pass filtering to prevent
aliasing. Spectral analysis indicates that the fastest of voluntary arm movements have no power above about
8.7 Hz [Jones and Donaldson, 1986]. This is very similar to the maximal voluntary oscillations of the
elbow of 4-6 Hz [Neilson, 1972; Leist et al., 1987] and to maximum finger tapping rates of 6-7 Hz [Muir
et al., 1995]. The sampling rate can be reduced still further if the primary interest is only in coherent
performance, whose bandwidth is only of the order of 2 Hz for both kinesthetic stimuli [Neilson, 1972]
and visual stimuli [Leist et al., 1987; Neilson et al., 1993]; that is, performance above 2 Hz must be
open-loop and, hence, learned and preprogrammed [Neilson, 1972]. Thus, from an information theory
point of view, there is no need to sample tracking performance beyond, say, 20 Hz. However, a higher rate
may well be justified on the grounds of needing better temporal resolution than 50 ms for transient or
cross-correlation analysis, unless one is prepared to regenerate the signal between samples by some form
of non-linear interpolation (e.g., sinc, spline, polynomial).

77.3.3.14 Other Measures

Several researchers have further extended the information which can be derived from upper-limb tracking
performance by comparison with other simultaneously recorded biosignals. The most common of these is
the EMG, particularly integrated EMG due to its close parallel to force of contraction [Neilson, 1972] and
where the tracking movement is constrained to be around a single joint. The EMG has been used together
with step tracking for fractionating reaction times into premotor and motor components [Anson, 1987;
Sheridan et al., 1987] and confirmation of open-loop primary movements [Sittig et al., 1985; Sheridan
et al,, 1987]. In smooth tracking, correlation/cross-spectral analysis between the EMG and limb position
has been used to study limb dynamics [Neilson, 1972; Barr et al., 1988].

In contrast, Cooper et al. [1989] measured the EEG at four sites during 2-D random tracking to show
that slow changes in the EEG (equivalent to the Bereitschaftspotential preceding self-paced voluntary
movement), particularly at the vertex, are correlated with the absolute velocity of the target.

Simultaneous measurement of hand and eye movements has been carried out by Warabi et al. [1986]
and Leist et al. [1987] using EOG to measure horizontal eye movements and by Gibson et al. [1987] who
used an infra-red limbus reflection technique. Interestingly, Leist et al. [1987] found that ocular pursuit
and self-paced oscillations were limited to about 1 and 2.2 Hz, respectively, whereas the equivalent values
for arm movements are 2 and 4-6 Hz, respectively.

77.3.3.15 Standard Assessment Procedures

Having designed and constructed a tracking task or set of tracking tasks with the characteristics necessary
to allow measurement of the sensory-motor control performance capacities under investigation, it is
essential that this process be complemented by a well formulated set of standard assessment procedures.
These must include (a) standard physical setup, in which positioning of subject, sensor, and screen are
tightly specified and controlled, as well as factors such as screen brightness, room lighting, etc., and (b)
standardized instructions. The latter are particularly important in tasks where speed-accuracy tradeoff
[Fitts, 1954; Welford, 1968; Agarwal and Logsdon, 1990] is possible. This applies particularly to step
tracking in which leaving the tracking strategy completely up to subjects introduces the possibility of
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misinterpretation of differences in performance on certain measures, such as reaction time, risetime,
and mean absolute error. For example, subjects need to know if it is more important to have the initial
movement end up close to the target (i.e., emphasis on accuracy of primary movement) or to get within
the vicinity of the target as soon as possible (i.e., emphasis on speed of primary movement); the latter
results in greater under/overshooting but also tends to result in lower mean errors). The most common
approach taken is to stress the importance of both speed and accuracy with an instruction to subjects of
the form: “Follow the target as fast and as accurately as possible.”

77.3.3.16 Test and Experimental Protocols

The design of appropriate test and experimental protocols is also a crucial component of the tracking
task design process [Roscoe, 1975; Pitrella and Kruger, 1983]. When comparisons are made between
different subjects, tasks, and/or conditions, careful consideration needs to be given to the paramount
factors of matching and balancing to minimize the possibility of significant differences being due to some
bias or confounding variable other than that under investigation. Matching can be achieved between
experimental and control subjects in an inter-subject design by having average or one-to-one equivalence
on age, gender, education, etc., or through an intra-subject design in which the subject acts as his/her
own control in, say, a study of dominant versus non-dominant arm performance. Balancing is primarily
needed to offset order effects due to learning which pervade much of sensory-motor performance [Welford,
1968; Poulton, 1974; Schmidt, 1982; Frith et al., 1986; Jones et al., 1990]. A study by Jones and Donaldson
[1989] provides a good example of the application of these principles. Their study, aimed at investigating
the effect of Parkinson’s disease on predictive motor planning, involved 16 Parkinsonian subjects and 16
age and sex matched control subjects. These were then divided into 8 subgroups in a 3-way randomized
cross-over design so as to eliminate between- and within-session order effects in determining the effect of
target type, target preview, and medication on tracking performance.

77.4 Analysis of Sensory-Motor Control Performance

77.4.1 Accuracy

Analyses of raw tracking data can provide performance information which is objective and quantitative
and which can be divided into two broad classes:

Measures of Global Accuracy of Performance: Measures of global (or overall or integrated) sensory-motor
control capacities have proven invaluable for:

e Vocational screening of minimum levels of sensory-motor skills: Tracking tasks, in fact, have their
origins in this area during World War II when they were used to help screen and train aircraft pilots
[Welford, 1968; Poulton, 1974].

e Clinical screening for sensory-motor deficits (arising from one or more lesions in one or more sites
in the sensory-motor system): An excellent example of the application of this in clinical practice
is the provision of objective measures in off-road driving assessment programs [Jones et al., 1983;
Croft and Jones, 1987].

e Clinical and rehabilitation research by measurement of longitudinal changes in sensory-motor
function: There are many examples of subjects being assessed repeatedly on tracking tasks for
periods up to 12 or more months. This has been done to quantify recovery following head injury
[Jones and Donaldson, 1981] and stroke [Lynn et al., 1977; De Souza et al., 1980; Jones and
Donaldson, 1981; Jones et al., 1990] as well as for studies of learning in tracking performance
[Poulton, 1974; Jones and Donaldson, 1981; Schmidt, 1982; Frith et al., 1986; Jones et al., 1990].
They can also be used to quantify changes due to medication, such as in Parkinson’s disease [Baroni
et al., 1984; Johnson et al., 1996; Jones et al., 1996; Soliveri et al., 1997].

Measures of Characteristics of Performance: Measures of global accuracy of tracking performance
can detect and quantify the presence of abnormal sensory-motor control performance capacities with
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considerable sensitivity [Potvin et al., 1977; Jones et al., 1989]. Conversely, they are unable to give any
indication of which of the many subsystems or performance resources in the overall sensory-motor system
are, or may be, responsible for the abnormal performance. Nor can they provide any particular insight
into the underlying neuromuscular control mechanisms of normal or abnormal performance.

Four approaches can be taken to provide information necessary to help identify the sensory-motor
subsystems and their properties responsible for the characteristics of observed normal and abnormal
performance:

e Batteries of neurologic sensory-motor tests — These tests can be used to, at least ideally, isolate and
quantify the various sensory, motor, cognitive, and integrative functions and subsystems involved
in sensory-motor control performance as measured globally by, for example, tracking tasks.

e Functional decomposition — Fractionation of the various performance resources contributing to
tracking performance.

e Traditional signal processing approaches — Time domain (ballistic and nonballistic) and frequency
domain techniques.

e Graphical analysis — This has primarily been developed for measurement and investigation of
changes in performance and underlying PRs over time.

77.4.2 Measures of Global Accuracy of Performance

The most commonly used measure of global or overall accuracy is the mean absolute error (MAE) [Jones
and Donaldson, 1986] which indicates the average distance the subject was away from the target irrespective
of side; it is also variously called average absolute error [Poulton, 1974], modulus mean error [Poulton,
1974], mean rectified error [Neilson and Neilson, 1980], or simply tracking error [Kondraske et al., 1984;
Behbehani et al., 1988]. In contrast, the mean error, or constant position error, is of little value as it
simply indicates only the extent to which the response is more on one side of the target than the other
[Poulton, 1974]. Measures of overall performance which give greater weighting to larger errors include
mean square error [Neilson et al., 1993], root mean square error [McRuer and Krendel, 1959; Poulton,
1974; Navon et al., 1984; O’Dwyer and Neilson, 1995], variance of error [Neilson and Neilson, 1980],
and standard deviation of error [Poulton, 1974]. Relative or normalized error score equivalents of these
can be calculated by expressing the raw error scores as a percentage of the respective scores obtained had
subject simply held the response marker stationary at the mean target position [Poulton, 1974; Neilson
and Neilson, 1980; Day et al., 1984]; that is, noresponse = 100%. Alternatively, the relative root mean
square error, defined as the square root of the ratio of the mean square value of the error signal to the
mean square value of the target signal expressed as a percentage, allows tracking errors to be compared
across tests using different target signals [Neilson et al., 1998].

Overall coherence is an important alternative to the above measures when it is wished to assess the
similarity between target and response waveforms but there is a substantial delay between them. It provides
an estimate of the proportion of the response that is correlated with the target over all frequencies [O’Dwyer
and Neilson, 1995; O’Dwyer et al., 1996].

Anissue met in viewing error scores from the perspective of Kondraske’s [Kondraske, 1995a,b] elemental
resource model is the unifying requirement of its associated general systems performance theory (GSPT)
that all dimensions of performance must be in a form for which a higher numerical value indicates a
superior performance. Thus scores which state that a smaller score indicates a superior performance,
including reaction times, movement times, and all error scores, need to be transformed into performance
scores [Kondraske, 1988]. For example:

o Central response speed = 1/(reaction time)

o Information processing speed = 1/(8-choice reaction time)
e Movement speed = 1/(movement time)

o Tracking accuracy = 1/(tracking error)
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As transformation via inversion is non-linear, the distributions of raw error scores and derived per-
formance will be quite different. This has no effect on ordinal analyses, such as non-parametric statistics,
but will have some effect on linear analyses, such as parametric statistics, linear regression/correlation,
etc., and may include improvements due to a possible greater normality of the distributions of derived
performances. An alternative transformation which would retain a linear relationship with the error
scores is:

Tracking accuracy = 100 — Relative tracking error. However, while this gives a dimension of performance
with the desired ‘bigger is better’ characteristic, it also raises the possibility of negative values, implying an
accuracy worse than zero! — the author can attest to the fact that some subjects do indeed end up with
error scores worse than the “hands off” score. Irrespective of GSPT, there is no doubt that it is beneficial to
deal conceptually and analytically with multiple performance measures when all measures are consistently
defined in terms of “bigger is better.”

Time on target is a much cruder measure of tracking performance than all of the above but it has been
used reasonably widely due to it being the result obtained from the pursuit rotor. The crudeness generally
reflects (a) a lack of spatiotemporal sampling during a task (i.e., simple integration of time on target only)
preventing the possibility of further analysis of any form, and (b) a task’s performance ceiling due to the
target having a finite zone within which greater accuracy, relative to center of zone, is unrewarded. This
latter factor can, however, be used to advantage for the case where the investigator wishes to have control
over the difficulty of a task, to gain, for example, similar levels of task difficulty across subjects irrespective
of individual ability. This attribute has been used very effectively with 2-D random tracking tasks to
minimize the confounding effects of major differences in task load between experimental and control
subjects in dual task studies of impairment of central executive function in subjects with Alzheimer’s
disease [Baddeley et al., 1986] and Parkinson’s disease [Dalrymple-Alford et al., 1994].

77.4.3 Measures of Characteristics of Performance

77.4.3.1 Batteries of Neurologic Sensory-Motor Tests

Potvin and associates [Potvin and Tourtellotte, 1975; Potvin et al., 1985], now led by Kondraske et al. [1984,
1988], have developed what is by far the most comprehensive battery of tests available for quantitative
evaluation of neurologic function covering a number of sensory, motor, cognitive, and sensory-motor
functions or performance resources. Similarly, Jones et al. [1989, 1993] have developed a battery of
component function tests, most of which have been specifically designed to isolate and quantify the various
performance resources involved in their tracking tasks. There is, therefore, a close resemblance between
the component and tracking tests so as to maximize the validity of comparisons made between them.

77.4.3.2 Functional Decomposition of Tracking Performance

There are three main approaches whereby tracking performance can be fractionated or decomposed into
its functional components: sensory, perceptual, cognitive, motor planning, and motor execution.

The first involves breaking the ballistic response in step tracking into reaction time, movement time,
overshoot, and settling time [Flowers, 1976; Evarts et al., 1981; Jones and Donaldson, 1986; Behbehani
et al., 1988; Kondraske et al., 1988] (see “Time domain (ballistic) analysis” below). This allows indirect
deductions about cognitive, motor planning, and motor execution functions, although the distinction
between cognitive and motor elements often remains imprecise.

The second involves calculation of differentials in tracking performance from inter-trial alterations
in target and/or controlled system dynamics. This has been successfully used to study predictive motor
planning [Flowers, 1976; Flowers, 1978; Bloxham et al., 1984; Day et al.,1984; Jones and Donaldson, 1989],
acquisition/modification of motor sets [Frith et al., 1986], and reliance on visual feedback [Flowers, 1976;
Cooke et al., 1978; Frith et al., 1986] in Parkinson’s disease.

The third approach allows a more direct identification of the contribution of certain elemental resources
to tracking performance during a specific tracking run. For example, by introducing the concept of a
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visuoperceptual buffer-zone, it is possible to estimate the contribution of visuoperceptual function to
tracking performance [Jones et al., 1996]. This technique has been used to demonstrate that impaired
visuoperceptual function in Parkinsonian subjects plays only a minor role in their poor tracking perform-
ance [Jones et al., 1996] but, conversely, that impaired tracking performance in stutterers is predominantly
due to reduced dynamic visuospatial perception [A.]. White, R.D. Jones, K.H.C. Lawson, and T.J. Ander-
son, unpublished observations]. Furthermore, the visuoperceptual function can itself be fractionated into
visual acuity, static perception, and dynamic perception [Jones and Donaldson, 1995].

In contrast to fractionation of performance on a high level task (e.g., tracking, driving), Kondraske et al.
[1995a,b] have developed techniques for the reverse process. They have shown how their hierarchical
elemental resource model can be used to predict performance on high level tasks from performance on a
number of lower level tasks [Kondraske, 1987; Vasta and Kondraske, 1994; Kondraske, 1995b; Kondraske
et al., 1997]. This approach has considerable potential in application areas such as rehabilitation. For
example, it could be used in driving assessment programs to predict on-road driving ability by off-road
measurement of performance on several key lower level tasks pertinent to driving, such as reaction time,
visuospatial, cognitive, and tracking.

77.4.3.3 Time Domain (Non-Ballistic) Analysis of Tracking Performance

There are several run-averaged biases which can indicate the general form of errors being made, particu-
larly when the tracking performance is subnormal. Positive side of target (%) and direction of target (%)
biases reflect a greater proportion of errors occurring to the right of the target or while the target is
moving to the right respectively [Jones and Donaldson, 1986] which, if substantial, may indicate the
presence of some visuoperceptual deficit. Similarly, the side of screen bias (assuming mean target pos-
ition is mid-screen) [Jones and Donaldson, 1986] is identical to the mean error or constant position
error.

Perhaps the single most important measure of performance, other than mean absolute error, for
non-transient targets is that of the average time delay, or lag, of a subject’s response with respect to
the target signal. The lag is most commonly defined as being the shift, 7, corresponding to the peak
of the cross-correlation function, calculated directly in the time domain or indirectly via the inverse of
the cross-spectrum in the frequency domain. Although simulation studies indicate that these techniques
are at least as accurate and as robust to noise/remnants as the alternatives listed below [Watson, 1994],
one needs to be aware of a bias leading to underestimation of the magnitude of the lag (or lead) due to
distortion of the standard cross-correlation function, but specifically of the peak towards zero shift. The
distortion arises due to the varying overlap of two truncated signals (i.e., the target and the response)
resulting in the multiplication of the cross-correlation function by a triangle (maximum at ¢ = 0 and
zero at T = NTs, assuming signals of equal length NTs). This effect is minimal as long as both signals have
a mean value of zero (i.e., zero d.c.). Temporal resolution is another factor deserving consideration. If
desired, greater resolution than that of the sampling period can be obtained by interpolation of the points
around the peak of the cross-correlation function by some form of curve fitting (e.g., parabola [Jones
et al., 1993]).

An alternative estimate of the lag, which has proven accurate on simulated responses, can be gained
from the least squares time delay estimation by finding the time shift between the response and target
at which the mean square error is minimized [Fertner and Sj6lund, 1986; Jones et al., 1993]. Another
approach, phase shift time delay estimation, calculates lag from the gradient of the straight line providing
a best least-squares to the phase points in the cross-spectrum [Watson et al., 1997]. This technique has,
however, proven more sensitive to non-correlated remnants in the response than the other procedures
[Watson, 1994].

Several measures used to help characterize within-run variability in performance include variance of
error [Neilson and Neilson, 1980], standard deviation of error [Poulton, 1974], and inconsistency [Jones
and Donaldson, 1986].
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FIGURE 77.5 Transient response analysis. Tolerance zones: RZ is the reaction zone, and TZ is the target zone.
Performance parameters: RT is the reaction time, PMT is the primary movement time, SCT is the secondary correction
time, TET is the target entry time, PV is the peak velocity, PME is the primary movement error, and MAE is the mean
absolute error over a fixed interval following stimulus.

77.4.3.4 Time Domain (Ballistic) Analysis of Tracking Performance

Whether or not any of the above nonballistic analyses, evaluation of step tracking performance usually
involves separate ballistic or transient analysis of each of the step responses. This generally takes the form
of breaking up each response into three phases (Figure 77.5) (1) reaction time phase, or the time between
onset of step stimulus and initiation of movement defined by exit from a visible or invisible reaction
zone, (2) primary movement phase, or the open-loop ballistic movement made by most normal subjects
aiming to get within the vicinity of the target as quickly as possible, the end of which is defined as the
first stationary point, and (3) secondary correction phase, comprising one or more adjustments and the
remaining time needed to enter and stay within target zone. The step measures from individual steps
can then be grouped into various step categories to allow evaluation of the effect of step size, spatial
predictability, arm dominance, etc., on transient performance.

Accuracy of the primary aimed movement can also be characterized in terms of a constant error and
a variable error (standard deviation of error), which are considered to be indices of accuracy of central
motor programming and motor execution respectively [Guiard et al., 1983].

Phase-plane (velocity vs. position) plots provide an alternative means for displaying and examining the
qualitative characteristics of step tracking responses. In particular, they have proven valuable for rapid
detection of gross abnormalities [Potvin et al., 1985]. Behbehani et al. [1988] have introduced a novel
quantitative element to phase-plane analysis by deriving an index of coordination: Ic = V72 /A, where V,,
is the maximum velocity during an outward and return step and A is the area within the resultant loop
on the phase-plane plot.

77.4.3.5 Frequency Domain Analysis of Tracking Performance

Cross-correlation and spectral analysis have proven invaluable tools for quantifying the frequency depen-
dent characteristics of the human subject. The cross-spectral density function, or cross-spectrum Sy, (f),
can be obtained from the random target x(#) and random response y(¢) by taking the Fourier transform
of the cross-correlation function ry,(7), that is, Sy, (f) = F{rx,(t)}, or in the frequency domain via
Sxy(f) = X(f)Y(f)*, or by a nonparametric system identification approach (e.g., “spa.m” in MATLAB®).
The cross-spectrum provides estimates of the relative amplitude (i.e., gain) and phase-lag at each fre-
quency. Gain, phase, and remnant frequency response curves provide objective measures of pursuit
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tracking behavior, irrespective of linearity, and are considered a most appropriate “quasi-linear” tool for
obtaining a quantitative assessment of pursuit tracking behaviour [Neilson and Neilson, 1980]. From
the cross-spectrum one can also derive the coherence function which gives the proportion of the response
signal linearly related to the target at each frequency: (xy?> =* Sxy (F)*2/Sx(f)Sy(f). Lynn et al. [1977]
emphasize, however, that one must be cognizant of the difficulty representing tracking performance by
a quasi-linear time-invariant transfer function, especially if the run is of short duration or if the target
waveform is of limited bandwidth, as the results can be so statistically unreliable as to make description by
a 2nd- or 3rd-order transfer function quite unrealistic. Van den Berg et al. [1987] chose four parameters
to characterize tracking performance: low-frequency performance via the mean gain of transfer function
at the 3 lowest of 8 frequencies in target signal, high-frequency performance via the frequency at which
the gain has dropped to less than 0.4, mean delay via shift of peak of cross-correlation function, and
remnant via power in frequencies introduced by subject relative to total power. Spectral and coherence
analysis have been used to demonstrate that the human bandwidth is about 2 Hz for both kinaesthetic
tracking [Neilson, 1972] and visual tracking [Neilson et al., 1993], a much greater relative amplitude
of second harmonic in the response of cerebellar subjects in sine tracking [Miller and Freund, 1980], a
near constant lag except at low frequencies in normal subjects [Cassell, 1973], adaptation to time-varying
signals [Bosser, 1984], 2-D asymmetry in postural steadiness [Milkowski et al., 1993], and that normal
subjects can form non-dynamic and dynamic inter-limb synergies in a bimanual tracking task [O’Dwyer
and Neilson, 1995].

77.4.3.6 Graphical Analysis of Tracking Performance

Most of the of the above analyses give quantitative estimates of some aspect of performance which is
effectively assumed to be constant over time, other than for random fluctuations. This is frequently not
the case, especially for more complex sensory-motor tasks such as tracking. Changes in performance over
time can be divided into two major classes: class I: those for which the underlying PRs remain unchanged
(these are due to factors such as practice, fatigue, lapses in concentration, lack of practice, and changes in
task complexity) and class II: those for which one or more underlying PRs have changed (these are due
to abrupt or gradual alterations at one or more sites in the sensory-motor system and include normal
changes, such as due to age, and abnormal changes, due to trauma or pathology).

Studies of class I factors using tracking tasks are complicated most by the intra-run difficulty of a task
not being constant. Changes in tracking accuracy duringa run can be viewed via graphs of target, response,
and errors [Jones et al., 1993]. The latter is particularly informative for sinusoidal targets for which the
mean absolute errors can be calculated over consecutive epochs, corresponding to sine-wave cycles, and
plotted both in a histogram form and as a smoothed version of this [Jones and Donaldson, 1986]. As
complexity of task is constant over epochs (cf. random pursuit task), the error graph gives an accurate
measure of a subject’s time-dependent spatiotemporal accuracy that is not confounded by changes in task
difficulty and, therefore, gives a true indication of changes in performance due to factors such as learning,
fatigue, and lapses in concentration. Attempts by the author to derive an instantaneous or short epoch (up
to several seconds) function or index of task difficulty which would allow equivalent graphs to be generated
for random targets were unsuccessful.

Neilson et al. [1998] devised an alternative procedure for intra-run analysis, termed micromovement
analysis. This involves segmentation of the X and Y deflections of the response cursor on the basis of
discontinuities, flat regions, and changes in direction of the response. They used this to identify changes
in visual-motor coupling during the first 4 min of tracking on a 2-D compatible task following 4 h of
practice on a 2-D incompatible task. They propose that these changes are evidence of rapid switching
between different sensory-motor models in the brain.

By comparison, as long as the task remains unchanged over successive runs, studies of class II factors
using tracking tasks are complicated most by inter-run learning. Although most learning occurs over the
first one or two runs or sessions, tracking performance can continue to improve over extended periods
as evidenced by, for example, significant improvements still being made by normal subjects after nine
weekly sessions [Jones and Donaldson, 1981]. Consequently, a major difficulty met in the interpretation

© 2006 by Taylor & Francis Group, LLC



77-20 Biomedical Engineering Fundamentals

of serial measures of performance following acute brain damage is differentiation of neurologic recovery
from normal learning. Furthermore, it is not simply a matter of subtracting off the degree of improved
performance due to learning seen in normal control subjects. Jones et al. [1990] have developed graphical
analysis techniques which provide for the removal of the learning factor, as much as is possible, and which
can be applied to generating recovery curves for individual subjects following acute brain damage such as
stroke. They demonstrated that, for tracking, percentage improvement in performance (PIP) graphs give
more reliable evidence of neurologic recovery than absolute improvement in performance (PIA) graphs
due to the former’s greater independence from what are often considerably different absolute levels of
performance.

77.4.4 Statistical Analysis

Parametric statistics (t-test, ANOVA) are by far the most commonly used in studies of sensory-
motor/psychomotor performance due, in large part, to their availability and ability to draw out interactions
between dependent variables. However, there is also a strong case for the use of non-parametric statistics.
For example, the Wilcoxon matched-pairs statistic may be preferable for both between-group and within-
subject comparisons due to its greater robustness over its parametric paired ¢-test equivalent, with only
minimal loss of power. This is important due to many sensory-motor measures having very non-Gaussian
skewed distributions as well as considerably different variances between normal and patient groups.

Defining Terms

Basic element of performance (BEP): Defined by a functional unit and a dimension of performance, for
example, right elbow flexor + speed.

Dimension of performance: A basic measure of performance such as speed, range of movement,
strength, spatial perception, spatiotemporal accuracy.

Functional unit: A subsystem such as right elbow flexor, left eye, motor memory.

Performance capacity: The maximal level of performance possible on a particular dimension of
performance.

Performance resource (PR): One of a pool of elemental resources, from which the entire human is
modelled (Kondraske, 1995b), and which is available for performing tasks. These resources can be
subdivided into life sustaining, environmental interface, central processing, and skills domains, and
have a parallel with basic elements of performances.

Sensor: [in context of tracking tasks] A device for measuring/transducing a subject’s motor output.

Sensory-motor control: The primary (but not only) performance resource responsible for accuracy of
movement.

Spatiotemporal accuracy: The class of accuracy most required by tasks which place considerable
demand on attainment of simultaneous spatial and temporal accuracy; this refers particularly
to paced tasks such as tracking, driving, ball games, and video games.

Tracking task: A laboratory apparatus and associated procedures which have proven one of the most
versatile means for assessing and studying the human “black-box” sensory-motor system by provid-
ing a continuous record of a subject’s response, via some sensor, to any one of a large number of
continuous and well-controlled stimulus or target signals.
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Further Information

The Quantitative Examination of Neurologic Function by Potvin et al. [1985], is a two volume book which
provides a superb in-depth review of instrumentation and methods for measurement of both normal and
abnormal neurologic function.

An excellent overview of “Control of Postural Stability” is contained in the theme section (edited by
G. Harris) of the December 1992 issue of IEEE Engineering in Medicine and Biology Magazine.
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