
  

 

 

Abstract—The performance of a microsleep detection system 

was calculated in terms of its ability to detect the behavioural 

microsleep state (1‐s epochs) from spectral features derived 

from 16-channel EEG sampled at 256 Hz. Best performance 

from a single classifier model was achieved using leaky 

integrator neurons on an echo state network (ESN) classifier 

with a mean phi correlation (φ) of 0.38 and accuracy of 67.3%. 

A single classifier model of ESN with sigmoidal inputs achieved 

φ of 0.20 and accuracy of 48.5% and a single classifier model of 

linear discriminant analysis (LDA) achieved φ of 0.31 and 

accuracy of 53.6%. However, combining the output of several 

single classifier models (ensemble learning) via stacked 

generalization of the ESN with leaky integrator neurons 

approach led to a substantial increase in detection performance 

of φ of 0.51 and accuracy of 81.2%. This is a substantial 

improvement of our previous best result of φ = 0.39 on this data 

with LDA and stacked generalization. 

I. INTRODUCTION 

Tiredness and fatigue can often lead to brief instances of 
people falling asleep while engaged in some active task such 
as driving a motor vehicle. A study on fatigue by the General 
Association of German Insurance Industries, identified 
microsleep as the principal cause of 24% of fatal motorway 
accidents [1]. Lapses range from brief pauses to behavioural 
microsleeps (BM), which are brief, involuntary events of 
lapses in attention or responsiveness associated with events 
such as prolonged eye closure, blank stare, etc. [2], and 
which last 0.5–30 s [3]. Microsleeps are involuntary and, 
hence, other than awareness of feeling drowsy, don’t come 
with a prior warning. They are also frequently fatal. For 
example, if a person has a 4-s microsleep when driving at 100 
km/h, the vehicle will travel 111 m with the driver being 
completely non-responsive. 

The aim of this study was to identify reliable 
physiological cues indicative of microsleeps from the EEG, 
which could in turn be used to develop a real‐time microsleep 
detection (or, better still, prediction) system.   
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EEG from scalp recordings has traditionally been used in 
numerous sleep related studies [4–7]. Previously, a lapse 
detection system was developed based on spectral power 
features from EEG, aimed at detecting lapses with second-
scale resolution [2]. Another study used long short-term 
memory (LSTM) recurrent neural network (RNN) 
implementation to detect lapses [8].  

Echo state networks (ESN) provide an architecture and 
supervised learning principle for recurrent neural networks 
(RNNs). The main idea is (i) to drive a random, large, fixed 
recurrent neural network with the input signal, thereby 
inducing in each neuron within this ‘reservoir’ network a 
nonlinear response signal, and (ii) combine a desired output 
signal by a trainable linear combination of all of these 
response signals [9].  

RNNs are mostly used for modelling dynamical systems 
because of their inherent memory states. In general, ESNs 
have sigmoidal activation functions but an alterantive to this 
is the leaky integrator model in which the temporal 
characteristics of a learning task can be exploited by using 
the individual state dynamics of the system [11, 12]. This 
leaky-neuron approach can be used to study and exploit the 
long-time dependencies in the transient signals and attain 
higher memory spans. ESNs with leaky neuron 
configurations contain additional ‘global control parameters’ 
[11, 13] like the spectral radius of the reservoir weight matrix 
and a leaking rate (leakage factor) that can be optimized 
particularly for low frequency input signals. 

We have reported using an ESN-based classifier 

optimized with leaky integrator neurons on EEG data, 

superimposed with bursts of 2-s sinusoids with varying 

signal-to-noise ratios (SNRs) [10]. The aim of this 

simulation was to determine the classification performance of 

several detection systems/configurations on a gold-standard 

dataset for which the events were precisely known.  

The current study aimed to develop a microsleep detector 

using the echo state network (ESN) with leaky integrator 

neurons and compare its detection performance to that 

achieved in our earlier research with other  methods [2, 8, 

10, 14]. 

In addition to using different classifier modules, such as 

linear discriminant analysis (LDA), ESNs with sigmoidal 

units, and ESNs optimized with leaky integrator neurons, 

several signal processing and statistical methods were used 

to generate the features/ meta-features for the classification.  
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II. METHODS 

A. Data 

Fifteen healthy male subjects aged 18–36 years (mean = 
26.5) were recruited. All subjects had visual acuities of 6/9 (= 
20/30) or better in each eye. In addition, all 15 subjects 
considered that they slept normally the previous night (mean 
= 7.8 h, SD = 1.2 h, min = 5.1 h) and, hence, were considered 
non-sleep-deprived [2].  

EEG was recorded from electrodes at 16 scalp locations, 
band-pass filtered (0.5–100 Hz), and digitized at 256 Hz with 
a 16 bit A-D converter while the subjects performed a 1-D 
continuous visuomotor tracking task for 1 hour, in two 
separate sessions which were conducted a week apart from 
one another [1].  Bipolar derivations used to calculate power 
spectra were: Fp1–F3, Fp1–F7, Fp2–F4, Fp2–F8, F3–C3, 
F4–C4, F7–T3, F8–T4, T3–T5, C3–P3, P3–O1, T5-O1, C4–
P4, T4–T6, P4–O2, and T6–O2 [2]. Bipolar derivations were 
preferred over the referential ones because they could reject 
the common mode noise better.  

Facial video was also recorded during the tracking sessions 
and video-based microsleeps identified by prolonged eye-lid 
closure, sometimes accompanied by rolling upward or 
sideways movements of the eyes, head nodding, and often 
terminated by waking head jerks. Transitions in the video 
recording had a time resolution of 1.0 s. 

B. EEG analysis 

A 50 Hz notch filter was applied to the EEG to remove 
power interference. Independent component analysis (ICA) 
was then applied to remove eye blink artefacts [2]. Each 
derivation was normalized into z-scores, using the mean and 
standard deviation of the first 2-min of each 1-hour-long 
record. Log-power spectral features were then calculated for 
each EEG. Thirty four spectral features for each channel were 
calculated using a 2-s sliding window function, stepping at 1-
s intervals.  

C. Gold standard 

 Tracking task performance and video rating were the two 

independent measures used to identify when subjects were in 

the microsleep state. Performance lapses in the tracking task 

were recorded when the tracking response was non-coherent 

with the target and when the response cursor stopped moving 

for an extended period while the target was still in motion. 

Video recordings, synchronized to both EEG and tracking, 

provided a level of alertness in each subject. EEG data in the 

subjects who had at least a single lapse over the two sessions 

in both the video and the tracking response were selected for 

the microsleep detection system (N = 8). 

D. Feature selection and reduction 

The resulting 544 power spectral features (34 spectral 
features from the frequency bands delta (δ), theta (θ), alpha 
(α), alpha1 (α1), alpha2 (α2), beta (β), beta1 (β1), beta2 (β2), 
gamma (γ), gamma1 (γ1), gamma (γ2) & higher frequencies 
across all the 16 channels) were reduced using PCA. PCA is 
often used to reduce the redundancy within the original 
features and transform feature vectors into orthogonal 
components to aid in the formation of classification models.  
Therefore, it is possible to reduce the dimensionality of the 

data without any significant loss in the information. A total of 
25 - 200 meta-features from the PCA were then used to form 
a classification system suitable for the microsleep detection. 

E. Performance evaluation 

Performance of the microsleep detection system was 
calculated in terms of ability to detect the microsleep state in 
consecutive 1‐s epochs. Classification performance was 
determined by leave-one-out cross-validation corresponding 
to the 8 subjects (leaving one subject aside for training and 
test on the rest). Performance metrics were mean accuracy, 
sensitivity, specificity, selectivity, and Pearson two-binary-
variable correlation coefficient (Phi). 

The proposed prototype microsleep detection system is 
depicted in Figure.2. 

 

 
 

Figure 2. Proposed prototype microsleep detection system.  

III. CLASSIFICATION 

To find the optimal model for microsleep detection, 
classifier models using LDA, ESN with sigmoidal inputs, and 
ESNs with optimized leaky integrator neurons, were 
compared.  As a part of this study, the effectiveness of both 
linear and non-linear models in microsleep detection were 
also investigated. 

A. Linear discriminant analysis 

LDA traditionally maximizes the ratio of between-class 
variance to within-class variance in data thereby, achieving 
maximal linear separability. Because of the simplicity of this 
approach and its usage in one of our earlier works [2], LDA 
was set as the baseline for comparison with other classifier 
models. 

B. Echo state networks 

 A traditional reservoir computing architecture consists of 

an input layer, a dynamical reservoir with numerous sparsely 

inter connected neurons and an output layer [8], as 

illustrated in Fig. 2. This standard architecture includes 

sigmoidal activation functions on some of the simplest 

additive units. 

 
Input Node Dynamic Reservoir           Adjustable 

                                                  Output weights 
  

Figure 2. Echo state network (Image of reservoir layer adapted from [11]) 
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C. Optimized leaky integrator neuron approach 

ESNs are an innovative approach to the supervised training 
of a recurrent neural network (RNN) [3]. RNNs are mostly 
used for modelling dynamical systems because of their 
intrinsic memory states. ESNs usually incorporate sigmoidal 
activation functions as opposed to the leaky integrator model 
in which the temporal characteristics of a learning task can be 
exploited by using the individual state dynamics of the 
system [5]. This leaky neuron approach can be used to study 
and exploit long-time dependencies in transient signals and 
attain higher memory spans. ESNs with leaky neuron 
configurations contain additional ‘global control parameters’ 
[6], such as the spectral radius of the reservoir weight matrix 
and a leaking rate (leakage factor) that can be optimized 
particularly for low-frequency temporal dependencies. The 
main advantage associated with this type of architecture is 
that better classification can be achieved by varying the 
various parameters of each of these leaky integrator units, 
which in turn have their own individual state dynamics [7]. In 
the current study, we compare the sigmoidal ESN and 
cascaded ESN based classifier with leaky integrator models 
to other traditional approaches, such as LDA, in detection of 
microsleeps in EEG data.  

We have reported high classification performance of the 
leaky integrator ESN approach on EEG with simulated 
sinusoidal events [10]. The motivation behind this was to 
estimate event detection performance on a gold-standard 
dataset for which the events were precisely known, unlike the 
actual microsleep events.      

D. Ensemble learning 

Several studies [2, 15, 16] have demonstrated increased 
classification accuracy by combining the output of several 
models to increase predictive performance over that from a 
single model. Bagging, boosting, and stacking (stacked 
generalization) are the three extensively used methods in 
machine learning literature to combine the output of multiple 
models. 

In this study, the output of the multiple individual 
microsleep detectors was combined using stacked 
generalization. Stacking overcomes a substantial problem 
with the voting procedures in bagging and boosting which do 
not clarify which base models (output of the individual 
microsleep detectors) to trust [2]. Stacking maximizes 
ensemble learning by using a meta-learner process. 

E. Stacked generalization algorithm 

The stacking framework (Fig. 3) consists of level-0 and 
level-1 generalizers. The level-0 models are formed by base 
classifiers which are trained using the input data and the 
target output. The level-0 outputs are then presented as in 
input to the level-1 generalizer (meta-learner) which is also 
trainable.  

For the classification phase of the stacking system, new 
cases were generated for the level-0 models, each producing 
a classification value at their output. Then, the resulting base 
model predictions were fed into the level-1 model and 
combined linearly.  The linear combination scales the output 
of each model according to its weight, adds the new scaled 

model outputs, and applies a threshold to the added model 
output to obtain an overall prediction. 

 

Figure 3. Stacking framework for microsleep detection 

IV. RESULTS  

Multiple tests were performed on each of the feature 
selections/reductions, classifier modules, and methods used 
in prior research [2, 8, 10]. The first results were from leave-
one-out cross validation using single classifier modules for 
LDA, sigmoidal ESN, and leaky-neuron ESN, and were 
compared to results from stacking ensembles of the 
classifiers (Table 1). 

The microsleep detection system was trained and tested on 
both LDA and ESN based classifiers using a range of meta-
features (25 to 400). LDA required 200 meta-features to 
attain the optimal performance depicted in table 1. However, 
ESN classifiers (standard and leaky) required only 40 meta-
features to attain the optimal performance for the microsleep 
detection. 

TABLE I.  MICROSLEEP DETECTOR PERORMANCE 

% 
Single classifier modules 

LDA Sigmoidal ESN Leaky ESN 

Sensitivity 64.2 66.3 76.6 

Specificity 92.0 96.8 95.2 

Selectivity 29.3 20.7 45.1 

Phi (φ) 0.31 0.20 0.38 
 

% 
Stacked generalization (ensemble modules) 

LDA Sigmoidal ESN Leaky ESN 

Sensitivity 73.5 61.9 85.8 

Specificity 92.0 96.4 94.0 

Selectivity 31.3 28.5 53.6 

Phi (φ) 0.39 0.27 0.51 
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V. DISCUSSION 

In this study, both linear and non-linear classifiers were 
analysed and our results show that the performance of our 
prototype ESN-based microsleep detection system was 
modest. An ESN with standard sigmoidal inputs provided 
the least performance on both single classifier and stacking 
ensemble. The best performance recorded on the single 
classifier modules was from the leaky integrator ESNs with 
a phi of 0.38.  

LDA approach was the second best classifier module with 
a phi of 0.31 and phi of 0.40 for single classifier and 
ensemble models respectively. Use of ensemble learning has 
demonstrated a substantial increase in phi correlation across 
all classifier approaches indicating that combining outputs 
from multiple models can increase detection performance 
over a single model. 

A classifier built on an ESN with leaky integrators and a 

stacking ensemble achieved the highest microsleep state 

detection performance seen to date on the current data set, 

with a phi of 0.51 trumping our previous best of 0.40 with 

LDA [2]. This also supports our hypothesis from our work 

with simulated events [10] that a leaky-integrator ESN 

would demonstrate superior performance on the real 

microsleep detection problem.  

Furthermore, using the long short-term memory recurrent 

neural network [8] on the same subjects, a phi correlation of 

φ = 0.38 was reported. Interestingly, however, the 

performance recorded on the LSTM was surprisingly high, 

given the single classifier configuration, and that the EEG 

data being unprocessed and contaminated with eye blink 

artefacts.   

Comparison between the linear and non-linear models 

(LDA vs. leaky- integrator ESN and LSTMs) clearly 

illustrates that the neural networks with non-linear models 

can perform better on the EEG-spectral-power-based 

microsleep detection system.  

However, despite detecting most microstate states 

(sensitivity of 86%), the leaky-integrator ESN approach still 

reported too many false detections (selectivity of 45%). The 

number of false detections can be substantially reduced by 

increasing the output threshold of the overall detector but at 

a cost of missing more microsleeps.  

VI. CONCLUSION 

ESNs with leaky integrator neurons proved to be the most 

consistent approach yielding encouraging results and 

suggesting that the memory effect can indeed be exploited 

using this model.  

Future work on this project will include investigating 

supervised feature selection/reduction methods in addition to 

the other types of traditionally used non-linear classifier 

models such as the support vector machines (SVM). 

Research will also be focused on implementing more 

biologically-inspired models of reservoir computing 

structures such as the liquid state machines (LSM) [17] and 

exploring advantages they may confer to the microsleep 

detection problem. Additionally, performance metrics 

derived from receiver operator characteristic (ROC) and 

precision recall (PR) curves will be evaluated as alternatives 

to phi correlation on the current EEG-based microsleep 

detection system. 

Overall, whilst the performance of the current prototype 

microsleep detection system is encouraging, we consider the 

detection accuracy to be insufficiently reliable for 

implementation into real-world environments. However, the 

benefits of achieving such in terms of preventing loss of 

lives, especially in transport sectors, are so immense as to 

well justify further efforts and explorations of innovative 

approaches to achieving high-accuracy microsleep detection 

and prediction systems. 
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