
  

 

Abstract— Microsleeps are involuntary and brief instances 

of complete loss of responsiveness, typically of 0.5–15 s 

duration. They adversely affect performance in extended 

attention-driven jobs and can be fatal. Our aim was to predict 

microsleeps from 16 channel EEG signals. Two information 

theoretic concepts – pairwise joint entropy and mutual 

information – were independently used to continuously extract 

features from EEG signals. k-nearest neighbor (kNN) with k = 

3 was used to calculate both joint entropy and mutual 

information.  Highly correlated features were discarded and 

the rest were ranked using Fisher score followed by an average 

of 3-fold cross-validation area under the curve of the receiver 

operating characteristic (AUCROC). Leave-one-out method 

(LOOM) was performed to test the performance of microsleep 

prediction system on independent data. The best prediction for 

0.25 s ahead was AUCROC, sensitivity, precision, geometric 

mean (GM), and ϕ of 0.93, 0.68, 0.33, 0.75, and 0.38 

respectively with joint entropy using single linear discriminant 

analysis (LDA) classifier. 

I. INTRODUCTION 

Microsleeps are brief instances of complete and 
unintentional loss of responsiveness that typically last 
between 0.5–15 s in which even a non-sleep-deprived person 
momentarily falls asleep [1, 2].  They are generally cued 
from eye closure, droopy eyes, eye blinks, head nodding, and 
absent visuomotor performance [1, 3]. They adversely affect 
human performance in different sectors and in some cases, 
can be fatal on extended-attention monotonous activities such 
as driving, piloting, and air traffic control. 

Traditionally, power spectral features have been used for 
EEG-based microsleep detection [3-5]. Davidson et al. [3] 
achieved an AUCROC of 0.81 and ϕ of 0.38 with log-power 
spectral features, principle component analysis (PCA) for 
dimensionality reduction, and long-short-term-memory 
(LSTM) recurrent neural networks (RNN) for classification. 
Peiris et al. [4]  achieved an AUCROC of 0.86 and ϕ of 0.39 
with the same feature extraction and reduction techniques but 
with stacking of 6 LDA classifiers. Ayyagari et al. [5] used 
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the same approach but with stacked echo state networks 
(ESN) with leaky neurons to achieve ϕ of 0.51, sensitivity of 
0.85, and specificity of 0.94. An epoch length of 2 s with 
50% overlap was used in these studies. 

Shoorangiz et al. [6] rigorously revised the gold standard 
by taking account of tracking velocity, the transition between 
states, and uncertain segments. They also extracted log- 
power spectral features from different EEG frequency bands 
but used mutual information-based greedy forward feature 
selection algorithm to overcome the curse of dimensionality. 
They used synthetic minority oversampling (SMOTE) and 
adaptive synthetic sampling (ADASYN) to reduce the effect 
of data imbalance and compared their performance on a 
single LDA classifier with no resampling. Their best 
prediction for 0.25 s ahead was an AUCROC of 0.90 and ϕ of 
0.33 with resampling and SMOTE, whereas the best GM of 
0.74 was achieved with SMOTE and the best precision of 
0.37 was achieved with no resampling. These studies used 
independently log-power spectral features extracted from 
individual EEG channels. 

We were motivated by the fact that EEG signals are 
generally multivariate and synchronously recorded, there is 
information in the inter-channel relationships that may be 
advantageous in the prediction of brain states over 
independently extracted features from individual channels. 
Neural interactions are transient and inherently non-
stationary [7]. Joint entropy is a measure of uncertainty 
associated with two random variables. It is the sum of log of 
joint probabilities of random variables and regarded as their 
joint information. Mutual information estimates linear and 
nonlinear dependencies between two random variables [8]. It 
is the sum of marginal entropies discounted by joint entropy 
or the sum of log ratio of joint probabilities of random 
variables to their marginal probabilities. Mutual information 
is also interpreted as the average number of bits of one 
variable, X, that can be predicted by another variable Y and 
vice versa. Bonita et al. [9] reported that, with EEG signals, 
mutual information at group level gave statistically 
significant separation between the two behavioural states of 
eyes open and eyes closed. They found that, even with small 
data lengths, typically of 1 s (1000 data points), mutual 
information was more robust to noise than correlations in 
time, such as Pearson, Spearman, and Kendall, using 
balanced data (number of both states the same). However, 
Quiroga et al. [10] compared the performance of several 
synchronization measures on rat EEG and concluded that 
with 1000 data points (5 s) mutual information could not 
produce robust estimates of synchronization in all three 
cases. Except for mutual information, phase synchronization, 
cross correlation, and coherence function produced 
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qualitatively similar results [10]. Blinowska [11] considered 
that mutual information works well in ideal conditions. 
However, the practicality of extracting mutual information 
from experimental data is limited by systematic errors and 
requires a large amount of data [7].  

To the best of our knowledge, both joint entropy and 
mutual information have not been used at epoch level to 
extract features from EEG to predict microsleeps.  

The aim of this study was to use two information 
theoretic concepts, i.e., joint entropy and mutual information 
between EEG channels, to improve the accuracy of 
microsleep prediction. 

II. METHODS 

A. Data 

Fifteen non-sleep-deprived healthy subjects aged 18–36 
years (mean 26.5) were recruited. None of the subjects 
reported any neurological or sleep disorder. All subjects slept 
normally and the average duration of sleep for the previous 
night was 7.8±1.2 h [2].  

Each subject performed a 1-D preview tracking task in 
two 1-hour sessions, one week apart. The task was to keep 
the tracking cursor as close as possible to the pseudorandom 
target. During the task, EEG, facial video, and tracking error 
were recorded. EEG was sampled at 256 Hz from 16 
channels placed per international 10–20 system, namely Fp1, 
Fp2, F3, F4, F7, F8, C3, C4, O1, O2, P3, P4, T3, T4, T5, and 
T6. Tracking performance was recorded at 64 Hz and facial 
video at 25 fps. 

B. Gold Standard 

Tracking task performance and video ratings were used to 
develop a gold standard. A responsive state corresponds to 
coherent tracking with the target regardless of video ratings. 
A microsleep was defined as mean absolute error > 3 cm 
lasting for more than 1 s or a drop in tracking velocity up to 
10th percentile of target velocity in combination with a video 
rating of deep drowsy or lapse [6].  

The gold standard was used in both the feature selection 
and classification stage as shown in Fig. 1, and in the 
evaluation of prediction performance. 

 

Fig. 1. Schematic of microsleep detection and prediction system. 

A. Joint Entropy 

For continuous-time bivariate random variables (X, Y), 
joint Shannon entropy H is defined as 

𝐻(𝑋, 𝑌) = − ∫ ∫ 𝑝(𝑥, 𝑦) ln 𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦, ( 1) 

where H is the entropy, p(x,y) is the joint probability density 
function (pdf) between X and Y. For discrete data, the 
integrals reduce to summation and probabilities can be 
estimated by counting samples. However, for continuous 
data, pdfs are estimated. Singh et at. [12] estimated entropy 
based on the k

th
 nearest neighbour distance between N sample 

points as 

�̂�(𝑋) = ln(𝑁) − 𝜓(𝑘) + ln(𝑣) +
𝑑

𝑁
∑ log 𝜖𝑖

𝑁
𝑖=1 , ( 2) 

where, N shows the number of sample points, ψ is digamma 
function, k is the k

th 
nearest neighbour, d is the dimension of a 

random variable, v is the volume of d-dimensional unit ball, 
and 𝜖𝑖 is the distance between xi and its k

th
 neighbourhood. 

The volume of the d-dimensional unit ball is calculated as 

𝑣 =  
𝜋𝑑/2

Γ(
𝑑

2
+1)

, ( 3) 

where, Г is the gamma function.      

A. Mutual Information 

Mutual information is denoted by I and defined as 

𝐼(𝑋, 𝑌) = − ∫ ∫ 𝑝(𝑥, 𝑦) ln
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑑𝑥𝑑𝑦, ( 4) 

where, p(x) and p(y) is marginal pdf of X and Y respectively. 
In term of Shannon’s entropies, mutual information can be 
expressed as 

𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌), ( 5) 

where, H(X) is the marginal entropy of X and H(Y) is the 
marginal entropies of Y, and H(X,Y) is their joint entropy. 

A. Feature Extraction 

Artefact subspace reconstruction (ASR) following band-
pass filtering of 1–45 Hz was used to remove artefacts from 
EEG [6]. The preprocessed EEG signals were then 
decomposed into overlapping EEG subbands, i.e., delta (0.5–
4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and 
gamma (30–45 Hz) following common average reference of 
channels. All EEG signals were decimated to 128 Hz to 
reduce processing time. EEG signals from each subband were 
segmented to 5 s epochs and steps of 0.25 s to account for 
shortest microsleep of 250 ms. Among different estimators of 
MI, Khan et al. [8] reported that kNN outperforms across all 
noise levels and for a small number of data points. We 
selected k = 3 to best account for the issue of bias-variance 
trade-off. Joint entropy and mutual information between each 
pair of EEG channel were calculated for each epoch and 
every subband. EEG with 16 channels results in 120 distinct 
channel pairs per subband. Thus, for a single epoch, there 
were 600 features for each joint entropy and mutual 
information. The ITE toolbox [13] was used for estimation of 
marginal and joint entropies which subsequently were used in 
estimating mutual information. 

A. Feature Selection 

A total of 600 features might have demanded the higher 
classifier complexity, and consequently, a high variance 
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problem might exist – the curse of dimensionality. To 
overcome this, we selected the best features from the training 
data set in three steps: (1) calculated Pearson correlation 
coefficient r between features and removed highly redundant 
features if |r| > 0.9, (2) ranked the remaining features by 
Fisher scores and sorted in descending order (a large Fisher 
score corresponds to a large mean difference and a small 
overlap, and consequently, good separation between two 
classes), and (3) 3-fold cross-validated the top ranked-feature 
using LDA classifier and saved the average value of 
AUCROC. The next feature was combined with the feature 
selected in the last iteration and was selected if the 
combination improved the AUCROC, otherwise, it was 
discarded. The process was repeated and at every iteration, 
based on AUCROC, a feature was either added or discarded. 
This ensured that features were only selected for which the 
combination improves the classification performance and 
resulted in 62 and 146 features of joint entropy and mutual 
information respectively. 

A. Classification 

A single LDA classifier was separately fed with joint 
entropy and mutual information features to predict 
microsleep states. Standard classifier performs better when 
the prevalence of different classes is approximately equal by 
minimizing the error [14, 15]. However, a simple algorithm-
based approach referred to as cost-sensitive learning [16] was 
used by adjusting the decision threshold to account for 
average class imbalance ratio (microsleep: responsive) of 
about 1:137. LOOM was performed on the data to train the 
classifier and to test on independent subjects. Prediction of 
microsleeps was 0.25 s ahead of the gold standard as shown 
in Fig. 2. 

 

Fig. 2. Prediction of gold standard from corresponding epoch. 

III. RESULTS 

Our analysis was limited to the 8 subjects who having had 
at least one definite microsleep over the two sessions. The 
data of one subject (both sessions) was held for testing and 
evaluation of prediction performance. The feature selection 
and training was done on the concatenated data of the other 
seven subjects. The cross-validation performance during the 
process of feature selection of both joint entropy and mutual 
information is shown Fig. 3. The classification process was 
repeated 8 times and different measures of performance were 
averaged for both joint entropy and mutual information. 
Prediction of the microsleep states on independent test data is 
presented in the TABLE I. Joint entropy on average gave 
substantially better AUCROC, sensitivity, specificity, GM, 
precision, and ϕ than mutual information. Furthermore, on 
average, mutual information needed 146 features compared 

62 features for joint entropy. Also, mutual information 
depends on both marginal entropies and joint entropy and, 
therefore, requires more computation than joint entropy.   

TABLE I.  MICROSLEEP PREDICTION PERFORMANCE 

 Joint Entropy Mutual Information 

AUCROC 0.93 0.81 

Sensitivity 0.68 0.59 

Specificity 0.90 0.83 

Precision 0.33 0.22 

GM 0.75 0.70 

Phi (ϕ) 0.38 0.23 

 

Fig. 3. Comparison of AUCROC of joint entropy and mutual information 

features at cross validation stage during feature selection. 

Except for AUCROC, all of the above mentioned 
performance measures are based on a threshold which in turn 
depends on class sizes. Therefore, average of such 
performance measures for imbalance data may be misleading 
as a classifier sets threshold on training data that have 
substantially different class sizes than test data. 

We, therefore, present test performance of independent 
subjects with their class imbalance ratio for joint entropy and 
mutual information in Fig. 4 and Fig. 5 respectively.  

 

 

Fig. 4. Performance of joint entropy features against imbalance ratio. 
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Fig. 5. Performance of mutual information features against imbalance ratio. 

IV. DISCUSSION 

The cross-validation AUCROC during the process of 
feature selection and test AUCROC of mutual information was 
poorer than joint entropy. While on average, joint entropy 
performed substantially better than mutual information in all 
measures of performance and with small number of features.  
However, mutual information was slightly more consistent in 
specificity, and GM than joint entropy across all imbalance 
ratios.  

Pairwise joint entropy of T6-O2 in theta frequency band 
showed the highest single-feature discrimination power in 
terms of Fisher score and AUCROC with average of 23.8 nats 
for responsive and 22.9 nats for microsleep states for all 8 
iterations of training data.  O1-O2 was dominant in all 
training iterations in which the training data contained only a 
small number of microsleeps with average of 23.6 and 22.7 
nats for responsive and microsleep states respectively in theta 
frequency band. This indicates that temporal and occipital 
regions of the brain become more active during the 
responsive state as more neuronal communication 
(information) in delta frequency band occurs when a person 
is responsive and less communication during the microsleep 
states. However, there was no consistent electrode pair and 
frequency band for mutual information. 

This indicates that mutual information on average 
contains less information than joint entropy presumably due 
to subtraction of joint entropy from sum of marginal 
entropies. Shared information (e.g., joint entropy, cross 
spectral powers) irrespective of relationship, account for the 
contribution of individual channels/sources and therefore 
represent the brain states more adequately. 

Use of joint entropy and mutual information is, therefore, 
application dependent. For statistical group analysis to 
differentiate two groups in a large population, mutual 
information may be a preferable choice. However, joint 
entropy appears preferable over mutual information for 
continuously extracting features at epoch level from small 
number of data points. 

V. CONCLUSION 

Microsleep states were predicted one-step-ahead, i.e., 
0.25 s prior to the gold standard. We tested both joint entropy 
and mutual information independently using a three-step 
feature selection method on a single LDA classifier. We 

could achieve an AUCROC of 0.93 that is the best reported 
performance for EEG-based microsleep prediction. Joint 
entropy compared to [6] gave better sensitivity, precision, 
and ϕ but substantial improvements are still needed for real-
time real world implementation. 

Future work will be focused more on feature extraction 
techniques that require less processing time and contain 
better information on brain states relating to microsleeps, 
e.g., asymmetric features. Fusion of orthogonal features 
containing non-redundant information. 
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