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A Multistage System to Detect
Epileptiform Activity in the EEG
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Abstract— A PC-based system has been developed to. auto-
matically detect epileptiform activity in sixteen-channel bipolar
EEG’s. The system consists of three stages: data collection,
feature extraction, and event detection. The feature extractor
employs a mimetic approach to detect candidate epileptiform
transients on individual channels, while an expert system is used
to detect focal and nonfocal multichannel epileptiform events.
Considerable use of spatial and temporal contextual information
present in the EEG aids both in the detection of epileptiform
events and in the rejection of artifacts and background activity as
events. Classification of events as definite or probable overcomes,
to some extent, the problem of maintaining high detection rates
while eliminating false detections. So far, the system has only
been evaluated on development data but, although this does not
provide a true measure of performance, the results are never-
theless impressive. Data from 11 patients, totaling 180 minutes
of sixteen-channel bipolar EEG’s, have been analyzed. A total of
45-71% (average S8%) of epileptiform events reported by the
human expert in any EEG were detected as definite with no false
detections (i.e., 100% selectivity) and 60-100% (average 80%) as
either definite or probable but at the expense of up to nine false
detections per hour. Importantly, the highest detection rates were
achieved on EEG’s containing little epileptiform activity and no
false detections were made on normal EEG’s.

1. INTRODUCTION

LECTROENCEPHALOGRAPHY is a well established
Eclinical procedure which can provide information perti-
nent to the diagnosis of a number of brain disorders (e.g.,
epilepsy or brain tumors). However, despite its widespread
use, it is one of the last routine clinical procedures to be fully
automated [1].

Analysis of the electroencephalogram (EEG) includes the
detection of patterns and features characteristic of abnormal
conditions. For example, asymmetries in the amplitude or
frequency of background activity suggest a lesion, while the
presence of epileptiform activity supports a clinical diagnosis
of epilepsy [2]. Over half the EEG referrals relate to epilepsy,
with the EEG being the most useful procedure in its diagnosis.

Recording the EEG during a seizure is particularly helpful in
determining whether a patient has epilepsy. Because seizures
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usually occur infrequently and unpredictably, obtaining such a
recording might require an EEG extending over several days
(long-term EEG monitoring). Techniques have been developed
for the automated detection of petit mal seizures [3]-[5]
and grand mal seizures [6], which have proven relatively
successful.

Between seizures, the EEG of a patient with epilepsy may be
characterized by occasional epileptiform transients (spikes and
sharp waves) and, consequently, relatively short recordings
can still be useful in the diagnosis of epilepsy. A routine
recording typically lasts 20—-30 minutes, during which some 40
m of paper record are produced. An electroencephalographer
(EEGer) detects epileptiform transients by visual inspection
of the recording, which requires considerable skill and is time
consuming. Hence, automation of this process could save time,
increase objectivity and uniformity, and enable quantification
for research studies.

Automated detection of epileptiform transients has two
primary areas of clinical application. The first is in long-
term EEG monitoring, where it acts essentially as a data
reduction process [7], [8]. A segment of EEG is recorded only
when a transient is detected and all segments are reviewed
by an EEGer. Thus, the goal is to detect a high proportion
of epileptiform activity while minimizing false detections.
The second area is in routine clinical recordings, where a
major objective is to minimize the visual inspection process
as far as epileptiform transients are concerned. In this case,
it is important not to precipitate a misdiagnosis of epilepsy
and, therefore, the aim is to eliminate false detections while
detecting a satisfactory proportion of epileptiform transients.

Spikes and sharp waves are defined as transients clearly
distinguished from background activity with pointed peaks at
conventional paper speeds [9]. Spikes are defined as having
durations of 20-70 ms, while sharp waves have durations of
70-200 ms. Throughout this paper, no distinction is made
between spikes and sharp waves and, therefore, they are
collectively termed epileptiform transients. Due to the wide
variety of morphologies of epileptiform transients and their
similarities to waves which are part of the background activity
and to artifacts (i.e., extracerebral potentials from muscles,
eyes, heart, electrodes, etc.), the detection of epileptiform
activity in the EEG is far from straightforward.

Several techniques have been applied to the detection of
epileptiform activity in the EEG. These include: a) template
matching, where a detection is made whenever the cross
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correlation of the EEG with a template exceeds a threshold
[10], [11]; b) parametric methods, where a detection is made
when the difference between the EEG and its predicted value
(based on the assumption that the background is stationary)
exceeds a threshold {12]-[14]; c) mimetic methods, where
one or more parameters of each wave are calculated and
thresholded [15]-[171]; d) syntactic methods, where detections
are based on the presence of a structural combination of
features [18]; e) artificial neural networks trained to detect
epileptiform transients [19]; and f) expert systems, which
detect epileptiform activity by mimicking the knowledge and
reasoning of the EEGer [20], [21]. Most of these systems are
still in the developmental stage, and those in clinical use are
restricted to long-term EEG monitoring with all detections
being reviewed by an EEGer. Due to a high number of false
detections, these systems cannot perform satisfactorily in the
routine EEG setting.

It is now generally accepted that the only way to separate
epileptiform from nonepileptiform waves is to make use of a
wide spatial and temporal context [20], [22]. Several groups
are implementing this approach in an effort to minimize
false detections. Glover et al. [20] have developed a system
that relies on a wide spatial context, with 12 EEG channels
being analyzed together with additional contextual information
provided by EKG, EOG, and EMG channels. Conversely, the
system developed by Gotman and Wang [22] implements a
wide temporal context, where sections of EEG are classified
into one of five states (active wakefulness, quiet wakefulness,
desynchronized EEG, phasic EEG, or slow-wave EEG) before
state-dependent rules are applied to reject nonepileptiform
activity.

We have Jeveloped a system that makes considerable use of
both spatial and temporal contextual information. This system
has proven particularly successful at rejecting nonepileptiform
activity in awake resting EEG’s [23]-[25]. It uses a mimetic
approach to detect candidate transients, which are subsequently
confirmed or rejected as epileptiform by an expert system. The
current system integrates both spatial and temporal contextual
information to detect definite and probable epileptiform activ-
ity and to reject nonepileptiform waves. Preliminary results
indicate that this system should be capable of performing
reliably in the routine clinical EEG setting.

II. SYSTEM OBJECTIVES AND PHILOSOPHY

Our aim was to develop a real-time PC-based system to
reliably detect epileptiform activity in the routine clinical EEG
recording. We firmly believe that if a system for detecting
epileptiform activity is to be of real value in assisting the
EEGer with routine EEG recordings, it must have no false
detections. Otherwise, the EEGer must inspect all activity
reported (to prevent a misdiagnosis of epilepsy), which could
well take longer than reviewing the entire record indepen-
dently. Thus, it is essential to eliminate false detections while,
at the same time, maintaining reasonable detection rates.

The approach we took was to replicate, as far as possible, the
knowledge and reasoning of a single EEGer (GJC). An expert
system is ideal for the implementation of such an approach
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because it provides a convenient way of representing knowl-
edge and encoding reasoning or logic. Extensive collaboration
with the EEGer was required to extract relevant knowledge.
In distinguishing epileptiform from nonepileptiform activity,
the EEGer makes extensive use of spatial and temporal con-
textual information. The spatial context of a wave includes
the presence of synchronous waves on adjacent channels, the
background activity on all channels, and any artifacts that are
present. The temporal context of a wave is: a) the background
activity upon which it occurs; and b) the occurrence of other
suspicious waves with similar distribution during the EEG.
This type of information can be conveniently represented in
an expert system.

Because epileptiform transients do not usually occur in iso-
lation, but arise synchronously on several channels, the EEGer
detects epileptiform events rather than individual epilepti-
form transients. The EEGer classifies these events as focal
(localized) or nonfocal (generalized) based on the spatial
relationships between transients. Therefore, we decided that
the final output of the system should be the epileptiform events
detected rather than individual epileptiform transients and that
a distinction should be made between focal and nonfocal
events.

We have developed a system that detects focal and nonfocal
epileptiform events in a manner similar to the EEGer. The
system consists of three stages: 1) a data collection stage,
which samples and digitizes EEG data; 2) a feature extractor,
which detects candidate epileptiform transients; and 3) an
expert system, which detects and classifies epileptiform events.

Because of the difficulty of reliably distinguishing epilep-
tiform events from all background activities and artifacts,
and because of sometimes conflicting clinical requirements
or priorities, we decided to allow two types of output. The
first is definite epileptiform events. For these, it is essential
that all artifacts and background activity are rejected and,
therefore, the subsequent detection rate of epileptiform events
may not be particularly high. The second type of output is
probable events. The aim here is to detect a higher proportion
of epileptiform events, but this is likely to be at the expense
of several false detections.

This approach should prove satisfactory for most situations.
When a data reduction process is required (e.g., in long-term
EEG monitoring), probable events can be used to trigger data
storage. In the routine EEG setting, it is intended that the
EEGer need only look at the probable event results if there
are few or no definite events detected.

III. DATA COLLECTION

The EEG is recorded by placing electrodes on the scalp
according to the International 10-20 system [26]. Sixteen
channels of EEG are recorded simultaneously for both referen-
tial montages, where all electrodes are referenced to a common
potential (e.g., ear, vertex, average), and bipolar montages,
where each electrode is referenced to an adjacent electrode.
Recordings are made while the patient is awake but resting and
include periods of eyes open. eyes closed. hyperventilation,
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and photic stimulation. Amplification is provided by an EEG
machine (Siemens Minograph Universal).

The EEG is bandpass filtered between 0.5 and 70 Hz using
a five-pole analog Butterworth filter, sampled at 200 Hz and
digitized to 12 b. At present, all data are stored for off-line
processing.

IV. FEATURE EXTRACTOR

The first stage of analysis is the feature extractor, which
essentially acts as a data reduction process extracting pertinent
information for use by the expert system. Therefore, the feature
extractor needs to detect a high proportion of epileptiform
transients and provide information about their context, without
detecting an unnecessarily large number of nonepileptiform
waves.

A mimetic approach was adopted and implemented in the
procedural language C. The EEG is divided into halfwaves (a
wave consists of two contiguous halfwaves) by a simple peak
detection algorithm. Parameters of the wave and its constituent
halfwaves are calculated, thresholded, and compared with
measures of the background activity. Waves whose parameters
exceed all thresholds are reported as candidate epileptiform
transients.

A. Parameters

The parameters calculated for each wave are duration,
amplitude, and sharpness which are defined as follows.

1) Duration of a wave [Fig. 1(a)] is the sum of the
durations of its halfwaves. The duration of each halfwave is
the duration from the peak to the point where the slope of
the halfwave (calculated over three samples, 15 ms) changes
rapidly (i.e., changes direction, or more than a 50% drop
in slope). This duration measurement ensures muscle spikes
(even those superimposed on slow waves) have short halfwave
durations.

2) Amplitude of a wave [Fig. 1(a)] is the difference between
the peak and a floating mean (the average EEG value over 75
ms centered on the peak). The amplitude measure is, therefore,
dependent on wave duration.

3) Sharpness of a wave is the sum of the peak slope
magnitudes of each of the two halfwaves [Fig. 1(b)]. The peak
slope of each halfwave is: a) the peak-to-peak slope when the
halfwave duration is less than 20 ms; or b) obtained by a least
squares estimation based on four samples (excluding peak).

Epileptiform transients are defined to be clearly distin-
guished tfrom background activity. Therefore. parameters of
each wave need to be compared with those of the background
activity. The following measures of the background activity
are calculated.

1) Background amplitude is the average difference between
the EEG and the floating mean. This measure of background
amplitude means that slow activity (e.g., delta waves, slow
waves of spike-and-wave activity) do not contribute signifi-
cantly to the background activity.

2) Background slope is the average magnitude of the slope
of the EEG between consecutive samples.
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Fig. 1. Definitions of parameters calculated for each wave. ta) Halfwave
durations (DI. D2), wave duration (D3), amplitude and offset of floating
mean from baseline. (b) Halfwave slopes (S1, S2).

3) Background duration is the average peak-to-peak dura-
tion of the halfwaves.

4) Background rhythmicity is defined by two parameters: the
coefficient of variation (standard deviation/mean) of halfwave
durations and the coefficient of variation of halfwave ampli-
tudes.

Measures of the background activity are calculated over | s
centered on the wave under consideration. In our experience.
a 1 s background is sufficiently long that an epileptiform
transient cannot dominate the background measure but is
sufficiently short that bursts of alpha or muscle activity have
a substantial effect. Therefore, waves making up such a burst
do not appear significantly larger than the background.

Parameters of each wave are compared with those of the
background activity by determining the relative amplitude and
sharpness. The relative amplitude of each wave is calculated by
dividing the amplitude of the wave by that of the background,
while the relative sharpness is obtained by dividing the wave
sharpness by the background slope. The background duration
and rhythmicity are used by the expert system in determining
the background activity (e.g.. alpha rhythms).

Suitable measures for parameters of both the individual
waves (amplitude. sharpness. and duration) and the back-
ground activity (amplitude. slope. duration. and rhythmicity)
were determined by statistical analysis (in preparation). A
number of different measures of each parameter were cal-
culated (e.g.. peak-to-peak halfwave amplitude, amplitude to
a floating mean. average halfwave slope, maximum halfwave
slope) and several techniques employed to compare the param-
eters of individual waves with those of the background activity
(e.g.. wave parameter/background parameter, wave param-
eter—background parameter, {wave parameter—background
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parameter] / standard deviation). A discriminant analysis was
used to determine the measures that best distinguished epilep-
tiform transients from nonepileptiform waves of similar mor-

phology.

B. Thresholds

Epileptiform transients do not usually occur in isolation
but arise synchronously on several channels. To detect a
high proportion of synchronous transients, a two-threshold
system is employed. When a wave whose parameters exceed
the thresholds is detected, waves on all channels within
50 ms are reconsidered using a lower set of thresholds.
This ensures that most epileptiform transients are detected,
while smaller nonepileptiform waves throughout the EEG are
rejected. Ideally, the higher set of thresholds allows at least one
epileptiform transient from every event to be detected while
the lower set of thresholds enables all transients constituting
the event to be detected.

C. Contextual Information

In order to replicate the reasoning of the EEGer, the
expert system requires knowledge of the spatial context in
which candidate transients occur. The spatial context of a
wave includes knowledge of activity on adjacent channels.
Thus, whenever a group of candidate epileptiform transients
is detected, measures of the background activity (amplitude,
slope, duration, and rhythmicity) on all channels are recorded.
This information can be interpreted spatially by the expert
system if the recording montage is known. The montage can
be determined (for a given recording protocol) by detecting
the times when the montage was changed (i.e., when no EEG
is present). To ensure that measures of the background activity
do not include periods when no EEG is present, it is necessary
to have a 0.5 s refractory period on either side of a montage
change.

Artifacts, such as eyeblinks and electrode movement, are
characterized by substantial prolonged deviations of the EEG
from baseline. Therefore, whenever the offset of the floating
mean from baseline exceeds a threshold of 50 uV, this fact is
reported to the expert system.

V. EXPERT SYSTEM

The expert system is the final stage in the detection
of epileptiform activity and rejection of artifacts and
epileptiform-like background activity. The expert system is
written in Prolog (a declarative artificial intelligence language)
and attempts to replicate the knowledge and reasoning of the
EEGer.

When reading an EEG, the EEGer tends to mark epilepti-
form events (rather than the individual epileptiform transients)
and classifies these as focal (localized) or nonfocal (gener-
alized). In distinguishing epileptiform activity from artifacts
and background activity, the EEGer makes use not only of
the amplitude and sharpness of waves but also of contextual
information. Thus, for automated detection of epileptiform
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activity, the parameters of the individual waves must be used in
conjunction with: a) spatial information (i.e., location of elec-
trodes on the scalp, channel derivations, presence of transients
or artifacts on adjacent channels); and b) temporal information
(i.e., the presence and distribution of abnormal activity during
the EEG). When EEGers observe suspicious activity, they
carefully review the electrodes involved searching for similar
activity. This approach can be implemented by detecting all
likely epileptiform events (based purely on spatial information)
and grading them as definite, probable, or possible. Probable
and possible events can then be upgraded or rejected based
on the presence and distribution of events elsewhere in the
recording.

A. Knowledge

In general, an expert system applies rules to facts and data to
infer new facts and arrive at conclusions. Our expert system
is provided with a number of facts concerning the location
of electrodes and the channel derivations for each montage.
These facts constitute the permanent knowledge of the system.
Further knowledge is derived through application of rules to
the data and these facts. At present, only bipolar montages are
included because of multichannel artifacts which frequently
arise on referential montages due to artifacts occurring at
the reference electrode. Presently, four bipolar montages are
included in the knowledge base.

B. Use of Spatial Context

Knowledge of electrode locations and channel derivations
allows the expert system to interpret information spatially.
Measures of the background activity on individual channels
can, therefore, be combined to describe the distribution of
EEG activity over the scalp.

The first task of the expert system is to eliminate artifacts
due to muscle contraction, eyeblinks, and electrode movement.
A series of rules, which take into account channel location and
background activity on adjacent channels, eliminates most of
these artifacts. These rules take the following form.

1) Bursts of muscle spikes are detected when the background
activity on any channel is of high frequency (>25 Hz) and
large amplitude (background amplitude >12.6 14V). All waves
within 200 ms possessing characteristics of muscle spikes
(i.e., short halfwave durations, high frequency background)
are disregarded.

2) Eye blinks are detected when the floating mean drops
significantly below baseline (>80 1V) on at least two frontal
channels. Waves on all frontal channels within 200 ms are
rejected as being a result of eyeblink.

3) Electrode movement is detected when the offset of the
floating mean from baseline exceeds 50 ;V for more than 400
ms and reaches a maximum offset of at least 100 V. All
waves on this channel within 200 ms are disregarded.

These rules successfully eliminate waves due to overt move-
ment, sustained muscle activity, electrode movement, and eye
blinks.
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Fig. 2. Four possibilities for focal events. (a) Phase reversal on adjacent
channels (focus at p3). (b) Phase reversal separated by a null channel (focus
between ol and t5). (c) Focus at beginning of an electrode chain (f8); no
phase reversal is observed with all transients being negative (upward). (d)
Focus at end of an electrode chain (¢5); no phase reversal is seen with all
transients being positive (downward).

Waves are also eliminated if they appear to be part of the
background activity. For example, a wave is considered to be
part of an alpha rhythm if its duration and background duration
fall within the alpha frequency range (8—13 Hz) and there are
rhythmical waves of alpha frequency on occipital channels.

The next stage of the spatial analysis is the detection
and grading of epileptiform events. An epileptiform event
comprises one or more synchronous epileptiform transients.
There are two types of epileptiform event: focal and nonfocal.
Focal or localized events arise from a center of negativity
(i.e., a focus) at the surface of the brain. On bipolar montages,
focal events are typically characterized by phase reversal on
adjacent channels [Fig. 2(a)], although there are several other
possibilities. For example, the phase reversal may be separated
by a null channel [Fig. 2(b)]; this occurs when the focus arises
between two electrodes. No phase reversal is observed when
the focus is at the beginning [Fig. 2(c)] or end [Fig. 2(d)] of
an electrode chain. On the other hand, constituent transients of
nonfocal events do not have any fixed polarity relationships,
although negative waves tend to hold greater significance,
especially on referential montages.

We define an epileptiform event to consist of all epileptiform
transients that arise within 40 ms of each other. To avoid
multiple detections for a single event, only one event every 125
ms is reported. Therefore, waves occurring within a window
of 125 ms are grouped together and each group of waves must
satisfy a number of criteria in order to be put forward as an
epileptiform event.

For a focal event to be detected, a distinct focus must be
found and all waves in the group must support its presence.
A focus is defined by two synchronous waves (Fig. 2) which:
a) are on adjacent channels with opposite polarity; b) have
opposite polarity but are separated by a null channel; c) are
both negative and at the beginning of an electrode chain; or
d) are both positive and at the end of an electrode chain.
The phase reversal must be such that the waves arise from
a center of negativity and not from a center of positivity.
Waves which appear to be due to a positive surface potential
are invariably electrode artifacts. Two synchronous foci can
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Fig. 3. Examples of nonfocal events from one EEG in which grading on
spatial grounds led to (a) a definite followed by a possible event and (b) a
probable event.

be detected if they arise over opposite hemispheres or at
nonadjacent electrodes.

A nonfocal event is detected when there are at least two syn-
chronous negative epileptiform transients and may include any
number of positive transients. No fixed polarity relationships
between waves are necessary.

Although events usually require at least two synchronous
transients, a single epileptiform transient can be detected
if it is particularly large and sharp. Single negative waves
are detected both as focal and nonfocal events, while single
positive waves are detected only as focal. Allowing a single
wave to constitute an event enables the detection of: a)
nonfocal events that consist of only one epileptiform transient;
and b) focal events where one of the waves defining the focus
has escaped detection by the feature extractor (either because
it is of very low amplitude, is insufficiently sharp, or occurs
during a burst of muscle activity).

Focal and nonfocal events are graded as definite, probable,
or possible corresponding to their level of certainty. The
grading of events is determined from the amplitude and
sharpness of constituent epileptiform transients. For focal
events, the grading is based on the two waves defining the
focus while, for nonfocal events, it is based on the two largest
negative waves. Classification of focal events is less stringent
than for nonfocal events because of the well-defining polarity
relationships which must exist between constituent waves. An
example of the grading of nonfocal events is shown in Fig.
3. Events consisting of a single wave are classified more
stringently and can, at most, be probable.

A major problem has been distinguishing between isolated
spikes due to muscle activity and epileptiform transients. Such
muscle spikes tend to be characterized by short halfwave
durations or a high-frequency background. However, many
epileptiform transients share these characteristics. To over-
come this problem, the grading of events as definite, probable,
or possible is based on waves which do not have characteristics
of muscle spikes. Therefore, events consisting of transients
with similarities to muscle spikes may be rejected or have a
lower level of certainty.
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Fig. 4. Anexample of artifact rejection in which (a) an electrode artifact was
initially detected as a definite focal event (focus at ¢5) but was rejected due
to lack of supporting evidence on adjacent channels, whereas (b) a definite
focal event (focus between ol1,t5) also manifested itself on nearby channels
(p4-p3 and p3-c3).

The classification of events is followed by a further artifact
rejection stage. Electrode artifacts may give rise to large waves
of opposite polarity on adjacent channels [Fig. 4(a)], which
may initially be detected as definite focal events. Events of
this type are rejected on the basis that definite focal events
should manifest themselves on more than two channels [Fig.
4(b)].

Based purely on spatial contextual information, it is not
always clear whether a group of waves constitutes a focal
or nonfocal event (the reasons for this become more evident
in Section V-C). Each group is searched for both focal and
nonfocal events and, hence, a group of waves may be detected
as both focal and nonfocal. More than one focus may arise
during an EEG. Our system, in addition to being able to detect
all foci occurring separately, can discriminate two synchronous
foci but may be unable to determine whether they are related
or independent (based purely on spatial information). These
classification difficulties are resolved by the temporal analysis
stage.

C. Use of Temporal Context

Temporal information is defined to be the presence of
abnormal patterns occurring with the same spatial distribution
during the EEG. This information is used to upgrade or reject
probable and possible epileptiform events and to resolve any
classification problems encountered during spatial analysis.

Probable and possible events are upgraded if there is tem-
poral support for their existence, otherwise they are rejected.
Events are upgraded if their constituent transients arise with
the same distribution as those of a definite event, or if there
is a group of at least three probable events with the same
distribution. For example, the probable event and possible
event of Fig. 3 arise on the same channels as the definite
event and so are upgraded to definite and probable events,
respectively. Therefore, in the final output there are only two
categories of event—definite and probable.

When a group of waves has been classified as both focal and
nonfocal, temporal information is used to determine the most
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Fig. 5. An example of resolving classification difficulties during temporal
analysis (a) a definite event detected as focal (focus at f8) and nonfocal, (b)
another event in the same EEG on another montage which is focal (focus at
f8). Thus, (a) is also classified as focal (f8).

likely event type. For example, the definite event of Fig. 5(a)
was initially detected as both focal (focus at f8) and nonfocal
because all transients are negative and arise at the beginning
of an electrode chain. The temporal analysis is able to resolve
this difficulty because events detected on another montage
exhibit phase reversal at f8 [e.g., Fig. 5(b)]. Similarly, the
events of Fig. 3 were initially classified as both nonfocal
and focal (focus at fpl) but, as there is no phase reversal
at this electrode at other times in the EEG, these events are
classified as nonfocal. In cases where correct classification is
still unclear, focal events take precedence unless all constituent
transients are negative.

If two synchronous foci are detected, temporal information
is used to determine whether they are independent. For ex-
ample, foci may be detected at f3 and f4. These may be
independent or may be due to a single focus at fz (i.e.,
between f3 and f4). By considering similar events detected
on montages that include fz or by determining whether the
foci also arise independently, it is possible for the system to
decide the number of foci present.

VI. SYSTEM PERFORMANCE

To date, system performance has been evaluated only on
data used for development (i.e., the evaluation and training
data are the same). Although this does not provide a true mea-
sure of performance, the results are nevertheless impressive.

Data from 11 patients aged 4-64 years (mean 25 years) have
been analyzed, totaling 180 minutes of sixteen-channel bipolar
EEG’s. The data covered a wide range of EEG’s—three
normal, four with only focal epileptiform activity, and four
with predominantly nonfocal epileptiform activity. A variety
of background activities also occurred (e.g., alpha, delta)
and most EEG’s contained significant amounts of artifact
(e.g., eyeblink, electrode movement, and muscle), particularly
during periods of hyperventilation and photic stimulation. All
bipolar EEG data available were used and no EEG’s (or
segments of EEG’s) were rejected because of excessive artifact
or “difficult” background activities (e.g., sharp alpha activity).

Results obtained from the system were compared with
those of a single EEGer (GJC). Throughout the development
process, the EEGer was consulted regarding events detected
by the system. Thirteen events not initially detected by the
EEGer were subsequently confirmed as being unequivocally
epileptiform. These events tended to arise on page boundaries
or during sections of EEG that contained considerable artifact.
Thus, although the EEGer was considered to have 100%
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TABLE 1
SYSTEM PERFORMANCE ON 11 EEGS: 3 NORMAL (N), 4 WITH ONLY FOCAL ACTIVITY (F), AND 4 WITH PREDOMINANTLY NONFOCAL ACTIVITY (NF)

EEG Duration EEGer Events Detected
(Type) (mins)  Events Definite Probable Total

True (%) Quest False (/hr) True (%) Quest False (/hr) True (%) Quest False (/hr)
1 (N) 20 0 0 () 0 0o (0 0 () 0 0 (0) 0 (- 0 0 (0)
2 N) 20 0 0 (=) 0 0 (0) 0 () 0 0 (0) 0 () 0 0 (0)
3 (N) 20 0 0 ) 0 0o (0 0 () o 0 (0 0 ) 0 0 (0
4 (F) 20 8 4 (500 0 0 (0) 3 3 4 2 (6) 7 (87 4 2 (6)
5 (F) 20 3 2 (67 0 0 (0 1 (3) 0o o (0 3 (100) 0o 0 (0
6 (F) 20 5 3 (60) 1 0 (0) 2 (40) 1 0 (0) 5 (100) 2 0 (0
7 (F) 15 27 121 (45) 2 0  (0) 38 (15 8 2 (8) 159 (60) 10 2 (8)
8 (NF) 15 0 50 (71) 1 0 (0) 4 6 2 1 (4 54 (77) 3 1 (4)
9 (NF) 5 62 40 (64) 1 0 (0) 9 a5 2 0 (0) 49 (19 3 0 (0
10 (NF) 5 37 20 (54 0 0 (0) 8 2 0 0 (0) 28 (16) 0 0 (0)
11 (NF) 20 0 5 (500 0 0 (0 1 (1) o 3 (9) 6 (60) 0 3 (9)
Totals 180 462 245 (53)! 5 0 (0) 66 (14) 17 8 (3) 311 (67! 22 8 (3)
Best Case (71) (0) (100) (0
Worst Case (45) (0) (60) 9)
Average Case (58)2 (0) (80)? (3)

1 Average over all events.
2 Average per EEG.

selectivity and 100% sensitivity (i.e., was the “gold standard”),
this was in part facilitated by his being able to reconsider his
“independent” scoring on viewing the system’s results. Events
detected by the system that the EEGer agreed were related
to other epileptiform activity in the EEG, but that would not
normally be reported, have been termed questionable events.

Results obtained from the system are detailed in Table I. The
system detected 45-71% of epileptiform events in an EEG as
definite with no false detections (i.e., 100% selectivity) and
60-100% as either definite or probable but at the expense of
up to nine false detections per hour. On average, 58% of the
events in an EEG were detected as definite and 80% as either
definite or probable. Because slow wave activity does not
contribute significantly to the background amplitude measure,
bursts of spike-and-wave activity are detected as several events
(Fig. 6).

VII. DISCUSSION

We have developed a system that makes considerable use
of spatial and temporal contextual information in detecting
epileptiform activity in the EEG. All synchronous transients
(ie., arising within 40 ms) are considered to constitute a
single event. Epileptiform events are reported as either focal
or nonfocal based on the polarity relationships between their
constituent transients. Two categories of event—definite and
probable—are employed to overcome the problem of main-
taining high detection rates while minimizing false detections
and to enable the system to be applied in different clinical
situations.

The highest overall detection rates were achieved on EEG’s
containing little epileptiform activity. When classifying an
EEG as normal or epileptiform, the number of events detected
is only of importance when there are very few of them, but
it is not so critical when the EEG contains a large amount of
epileptiform activity. Therefore, it is of little concern that the
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Fig. 6. A generalized burst of spike-and-wave activity detected as five
events.

t5-0

total detection rate is only 60% for EEG #7 in which there
were over 250 focal events. Of more concern is that only 60%
of events were detected for EEG #11, which contained only 10
events. However, three of the events in this EEG were unable
to be detected because they arose within 0.5 s of a montage
change. Although it would be possible to remove the refractory
period around montage changes by estimating measures of the
background activity, we do not feel that implementation of this
feature is warranted (e.g., if the montage had been changed 0.5
s earlier the events would not even have appeared on the chart).

False Detections: No events were reported for any of the
normal EEG’s. Thus, false detections only occurred in EEG’s
containing epileptiform activity and then only in the probable
category. All false detections had the same distribution as
epileptiform events but were generally too low in amplitude
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or insufficiently sharp to be considered epileptiform by the
EEGer.

Missed Detections: Missed detections fall into two classes:
1) those completely missed; and 2) those falsely rejected
as artifacts or background activity. Our system is unable to
detect epileptiform events that arise within 0.5 s of a montage
change or during sustained muscle activity and reports a
maximum of one event every 125 ms. The feature extractor
may not detect epileptiform transients if they are of very
low amplitude, are insufficiently sharp, or have muscle spikes
superimposed on them. The expert system tends to miss
events if only one epileptiform transient has been detected
by the feature extractor, because thresholds for the detection
of a single transient as an event are very high. In addition
to missing events completely, the expert system may also
reject true epileptiform events if all constituent transients have
characteristics of muscle spikes or appear to be part of the
background activity. Only 14 events were rejected by the
expert system, and 11 of these were due to their similarities
to muscle spikes. The temporal analysis stage of the expert
system rejects nondefinite events if they do not arise with the
same spatial distribution as other detected events. Overall, only
four events were rejected by temporal analysis.

Comparison with Other Systems: Comparisons  between
systems for detecting epileptiform activity are made difficult
by the wide range of “gold standards” used for evaluating
their performance. In particular, different definitions are used
for both false detections and missed detections. For example,
false detections can be defined as detections made by the
system that were: a) obviously artifact [27]; b) not marked
by any of n EEGers [19]; or ¢) marked by fewer than m
of n EEGers [10]. Similarly, missed detections may be: a)
those not detected by the system but marked by at least m
of n EEGers [19]; or b) those falsely rejected by the system
as nonepileptiform [27]. Despite these difficulties, we have
made an effort to compare the performance of our system
with that of others.

Most systems for the detection of epileptiform activity are
still in the developmental stage and, consequently, studies
of their performance tend to be limited. The most extensive
system evaluation has been performed by Gotman ef al. [27],
who recorded 2-3 minutes of EEG from 110 patients while
they were relaxed with eyes closed. An attempt was made to
obtain recordings as artifact-free as possible. During a total
of 255 minutes of sixteen-channel bipolar EEG, an average
of seven false detections per hour were reported. No account
was made of the number of transients entirely missed by the
system, but 16% of events were rejected as nonepileptiform.
This system, which adopts a mimetic approach, has since been
modified for long-term EEG monitoring and is now in regular
clinical use as a data reduction system. It is only used during
typical hours of sleep (11 p.m. to 5 am.) in an attempt to
reduce movement, muscle, and eyeblink artifacts. However,
Gotman [7] reported its performance to be “highly variable”
and stated that “the variety of morphologies of artifacts ap-
peared to preclude a total automatic elimination.” Recent
modifications [22], which implement a wide temporal context,
have considerably reduced the number of false detections (by
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up to 90%) with a minimal further loss of true epileptiform
transients (<5%). However, they still expect approximately 15
false detections per hour during periods of wakefulness (due
mainly to eyeblink artifacts).

Glover et al. {21] used a similar approach to ours, with a
mimetic stage being followed by a rule-based expert system.
Twelve channels of bipolar or referential EEG were analyzed
and additional information was available from EMG, EOG,
and EKG channels. The recordings analyzed included periods
of sleep, and results were reported for three patients. For
development data, 56% of events were detected with an
average of 15 false detections per hour while, for evaluation
data from the same three patients, 21-57% (average 40%) of
events were detected with 9-34 (average 16) false detections
per hour. Walters e al. [18] use a syntactic approach and
report that, for three EEG's, their system detected 70% of
epileptiform transients but reported 30 false detections in
the 30 minutes of EEG processed. Fischer et al. [10] use
a parametric method to detect transients in the EEG and
follow this with template matching. The system detected 73%
of transients marked by at least four of seven EEGers in
both a training and test set with seven false detections (i.e.,
marked by no EEGers) in 8.3 minutes (50/hour) and three false
detections in 8 minutes (23/hour) on the training and test sets,
respectively.

The overall detection rate for our system of 67%, with
an average of three false detections per hour, compares very
favorably with the results of other systems. The outstanding
feature of our system is, however, its ability to detect, on
average, 58% of events in an EEG as definite with no false
detections.

It is this ability to eliminate false detections that will make
our system applicable to routine clinical recordings. However,
more data are required to further evaluate its performance and
a blind clinical study is in progress. Further stages of develop-
ment include processing referential montages, application to
recordings with periods of sleep (long-term monitoring), and
integration of the data collection, feature extraction, and expert
system stages to achieve a system capable of real-time on-line
detection of epileptiform activity in the EEG.

It is only a system such as ours, which is able to elimi-
nate false detections and, thus, remove the need for manual
checking, that will find its way into routine clinical use.
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