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Multi-ancestry genome-wide association 
meta-analysis of Parkinson’s disease

Jonggeol Jeffrey Kim    1,2,167 , Dan Vitale1,3,4,167, Diego Véliz Otani5,6,167, 
Michelle Mulan Lian7,8,167, Karl Heilbron9, the 23andMe Research Team*, 
Hirotaka Iwaki1,3,4, Julie Lake1, Caroline Warly Solsberg    10,11,12, 
Hampton Leonard1,3,4, Mary B. Makarious    1,13,14, Eng-King Tan    15, 
Andrew B. Singleton1,4, Sara Bandres-Ciga1,4, Alastair J. Noyce2, the Global 
Parkinson’s Genetics Program (GP2)*, Cornelis Blauwendraat    1,4,168 , 
Mike A. Nalls    1,3,4,168 , Jia Nee Foo7,8,168  & Ignacio Mata16,168 

Although over 90 independent risk variants have been identified for 
Parkinson’s disease using genome-wide association studies, most studies 
have been performed in just one population at a time. Here we performed a 
large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 
cases, 18,785 proxy cases and 2,458,063 controls including individuals 
of European, East Asian, Latin American and African ancestry. In a 
meta-analysis, we identified 78 independent genome-wide significant loci, 
including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, 
PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative 
causal variants at 6 known PD loci. By combining our results with publicly 
available eQTL data, we identified 25 putative risk genes in these novel loci 
whose expression is associated with PD risk. This work lays the groundwork 
for future efforts aimed at identifying PD loci in non-European populations.

Parkinson’s disease (PD) is a neurodegenerative disease pathologi-
cally defined by Lewy body inclusions in the brain and the death of 
dopaminergic neurons in the midbrain. The identification of genetic 
risk factors is imperative for mitigating the global burden of PD, one 
of the fastest growing age-related neurodegenerative diseases. A large 

PD genome-wide association study (GWAS) meta-analysis uncovered 
90 independent genetic risk variants in individuals of European ances-
try1. Similarly, large-scale PD GWAS meta-analyses of East Asian2 and a 
single GWAS of Latin American3 individuals have each identified two 
risk loci that were not previously identified in Europeans. For PD, there 
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PESCA v0.3 (ref. 10) was run for the main European and East 
Asian meta-analyses and all loci identified in the main analysis were 
explored (Supplementary Table 6). PESCA uses ancestry-matched LD 
estimates to infer whether the causal variants are population-specific 
or shared between two populations. Variants identified as shared 
between the populations may be more likely to be causal. In addition, 
we expect higher posterior probability (PP) for shared causal vari-
ants in the loci identified by MAMA, even if they have not previously 
been identified in the single-ancestry study. The lead SNP in the RIMS1 
locus (rs12528068) had a high PP for being a shared causal variant 
(PP = 0.972) despite being significant in the European study1 but not 
in the East Asian study2. We also observed that the novel lead variants 
for MTF2 (rs35940311), PIK3CA (rs11918587), EP300 (rs4820434) and 
PPP6R2 (rs60708277) had higher PP estimates for being shared causal 
variants across both populations (PPshared = 0.757, 0.214, 0.769, 0.946) 
than for being causal variants in a single population (PPEUR <0.080, 
PPEAS < 0.001). However, it is important to note that the sample size 
discrepancy between the European and East Asian data impacts our 
power to detect population-specific causal variants at any of these loci.

We found 17 suggestive loci that failed to meet our stringent sig-
nificance threshold but had P < 5 × 10−8 in a fixed-effects meta-analysis 
and P < 1 × 10−6 in the random-effects meta-analysis (Supplementary 
Table 4). Fourteen of these regions were novel loci. Two loci near JAK1 
and HS1BP3 were exclusively found in the 23andMe Latin American 
and African cohorts. The lead SNPs (rs578139575 and rs73919910) for 
these loci are non-coding and very rare in European populations but are 
more common in Africans and Latin Americans (gnomAD v3.1.2 minor 
allele frequencies in EUR: 0.02%, 0.23%; AFR: 1.64%, 8.84%; AMR: 0.41%, 
1.91%). If confirmed, these loci would confer a strong effect on PD risk 
(beta: −1.3, −0.54). These loci merit further studies in the African and 
Latin American populations.

Fine-mapping identifies six credible sets with 
single variants
Fine-mapping was also performed using MR-MEGA, which uses ancestry 
heterogeneity to increase fine-mapping resolution. We identified 23 
loci that had fewer than 5 variants within the 95% credible set. Of these, 
MR-MEGA nominated a single putative causal variant with >95% PP in 
6 loci: TMEM163, TMEM175, SNCA, CAMK2D, HIP1R and LSM7 (Table 3  
and Supplementary Tables 7 and 8). Our results affirmed previous 
results showing the TMEM175 p.M393T coding variant as the likely 
causal variant11. The putative variants HIP1R have strong evidence for 
regulome binding (RegulomeDB rank ≤ 2). In particular the HIP1R variant 
rs10847864 is located in a transcription start site that is active in substan-
tia nigra tissue (chromatin state windows: chr12:123326200.123327200) 
and astrocytes in the spinal cord and the brain (chromatin state windows: 
chr12:123326400.123326600). Outside of the credible sets containing 
a single variant, we identified missense variants in two genes: FCGR2A 
(p.H167R, PP = 0.145) and SLC18B1 (p.S30P, PP = 0.780).

are now large-scale efforts to sequence and analyze genomic data 
in underrepresented populations with the goal of both identifying 
novel associated loci, fine-mapping known loci and addressing the 
inequality that exists in current precision medicine efforts4,5. Here 
we performed a large-scale multi-ancestry meta-analysis (MAMA) 
of PD GWASs by including individuals from four ancestral popula-
tions: European, East Asian, Latin American and African. This effort 
can serve as a guide for future genetic analyses to increase ancestral 
representation.

Meta-analyses identify 66 known and 12 novel loci
In addition to results from previously described European1, East Asian2 
and Latin American3 studies, we also used FinnGen and additional datasets 
for East Asian, Latin American and African cohorts from 23andMe, Inc 
(Table 1, Fig. 1 and Supplementary Table 1). In total, we included 49,049 
PD cases, 18,618 proxy cases (first-degree relative with PD) and 2,458,063 
neurologically-healthy controls. Genetic covariance intercepts from 
linkage disequilibrium (LD) score regression6 within ancestries were 
close to zero or near the 95% confidence interval, implying that there is 
no sample overlap between the cohorts (Supplementary Table 1). After 
the data were harmonized and mapped to genome build hg19, MAMAs 
were conducted using a random-effects model and meta-regression of 
multi-ethnic genetic association (MR-MEGA)7. The random-effects model 
had greater power to detect homogenous allelic effects7. MR-MEGA uses 
axes of genetic variation as covariates in its meta-regression analysis and 
had greater power to detect heterogeneous effects across the different 
cohorts. MR-MEGA also distinguishes ancestral heterogeneity (differences 
in effect estimates due to ancestry-level genetic variation) from residual 
heterogeneity using axes of genetic variation generated from the allele 
frequencies across the different cohorts.

Combining results from the random-effects model and MR-MEGA, 
we found 12 novel PD risk loci and 66 hits in known risk loci from 
single-ancestry GWAS (Table 2, Fig. 2 and Supplementary Tables 2–5) 
that met the Bonferroni-corrected alpha of 5 × 10−9, a more stringent 
threshold chosen to account for the larger number of haplotypes 
resulting from the ancestrally diverse datasets8. Of the 78 risk loci 
identified, 69 were significant in the random-effects model, whereas 
3 were only significant in MR-MEGA. Eight of the novel loci found by 
the random-effect method showed homogeneous effects across the 
four different ancestries. An additional novel locus (FASN) identified 
by the random-effect method showed homogeneous effects in all 
available populations, but note that this variant failed quality control 
in both East Asian datasets. The other three loci, identified exclusively 
in MR-MEGA, showed ancestrally heterogeneous effects. All three loci 
(IRS2, MYLK2 and USP25) showed evidence of significant ancestral 
heterogeneity (PANC-HET < 0.05) but no significant residual heteroge-
neity (PRES-HET > 0.148), supporting the idea that the signals are due 
to population structural differences rather than other confounding 
factors (Fig. 3). For the IRS2 locus (lead SNP rs1078514, PANC-HET = 5.3 × 
10−3) the Finnish cohort has an opposite effect direction compared to 
the meta-analysis effect estimate (Supplementary Fig. 4). Similarly, the 
MYLK2 locus has the African effect estimate most different from the 
meta-analysis effect estimate (lead SNP rs6060983, PANC-HET = 0.035), 
suggesting different effects between populations. Although this is a 
novel single-trait GWAS locus, its lead SNP was previously discovered as 
a potential pleiotropic locus in a multi-trait conditional/conjunctional 
false discovery rate (FDR) study between schizophrenia and PD9. Lastly, 
the USP25 locus had the most significant ancestral heterogeneity (lead 
SNP rs1736020, PANC-HET = 4.74 × 10−5) and its effects were specific to 
European and African cohorts, albeit in different directions. When 
looking at the nearest protein coding gene to each novel lead SNP and 
their probability of being loss-of-function intolerant (pLI) score, we 
found that 7 out of 12 genes had a pLI score of 0.99 or 1. Genes with low 
pLI scores were found both in loci with (MYLK2) and without (SYBU, 
PIGL and PPP6R2) significant ancestry heterogeneity.

Table 1 | Cohort descriptions

Study Ancestral population Cases/proxy/controls

Nalls et al.1 European (EUR) 37,688/18,618/1,411,006

Foo et al.2 East Asian (EAS) 6,724/0/24,851

LARGE-PD 3 Latin American (AMR) 807/0/690

FinnGen Release 4 European-Finnish (EUR) 1,587/0/94,096

23andMe—African African (AFR) 288/0/193,985

23andMe—East Asian East Asian (EAS) 322/0/151,905

23andMe—Latino Latin American (AMR) 1,633/0/581,530

MAMA 49,049/18,618/2,458,063

http://www.nature.com/naturegenetics
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Gene set analysis finds enrichment in brain 
tissues
We used the Functional Mapping and Annotation (FUMA) software12,13 
to functionally annotate the random-effect results. We generated a 
custom 1000 Genome reference panel that reflected the ancestry 
proportions of our dataset and ran multi-marker analysis of genomic 
annotation (MAGMA)14 for gene ontology, tissue level and single-cell 
expression data. We tested 16,992 gene ontology sets in MSigDB v7.0 
(ref. 15) and used conditional analysis to discard redundant terms or 
identify gene sets that must be interpreted together. We found that 
40 gene sets were significantly enriched with conditional analysis 

identifying 13 gene sets that share their signals with at least one other 
gene set (Supplementary Table 9). This is a substantial increase from 
previous 10 gene sets in the European meta-analysis performed by Nalls 
and colleagues1. Only two gene ontology terms that were significant in 
the Nalls et al. meta-analysis were also significant in the multi-ancestry 
results after multiple test correction: ‘curated geneset: Ikeda MIR30 
Targets Up’ (PFDR = 0.018) and ‘cellular component: vacuolar membrane’ 
(PFDR = 0.047). In addition, ontology terms in immune system pathways 
(microglial cell proliferation, macrophage proliferation, natural killer 
T cell differentiation: PFDR < 0.04), mitochondria (response to mito-
chondrial depolarization: PFDR = 0.028), vesicles (vesicle uncoating, 
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analysis. Middle panel: MAMA and the two methods used. Random-effect (top) 
is better suited for risk variants with homogeneous effect direction across 
different ancestries, whereas MR-MEGA (bottom) can identify risk variants with 
heterogeneous effects due to population stratification introduced by ancestry 

differences. The densely dashed lines indicate Bonferroni adjusted suggestive 
threshold of two-sided P < 1 × 10−6, and the loosely dashed lines indicate 
Bonferroni adjusted significant threshold of two-sided P < 5 × 10−9. Bottom panel: 
downstream analyses and their examples. Created with Biorender.com.
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phagolysosome assembly, regulation of autophagosome maturation: 
PFDR < 0.03) and tau protein (tau protein kinase activity: PFDR = 0.034) 
were significant. At the tissue level, the genes of interest were enriched 
in all brain cell types, as well as pituitary tissue (Supplementary Fig. 9), 
consistent with the results from Nalls et al.1.

When analyzing single-cell RNA-sequencing data, there was no 
expression enrichment across 88 brain cell types in mouse brain data 
when cross-referenced with DropViz16 (Supplementary Fig. 10). There 
was also no enrichment of any specific cell types in the substantia 
nigra tissue in DropViz (Supplementary Fig. 10). However, in human 
midbrain data17, dopaminergic (DA1) and GABAergic (GABA) neurons 
were enriched (Supplementary Fig. 10).

eQTLs and SMR nominate 25 putative genes near 
novel loci
We also searched the GTEx v8 (ref. 18) brain tissue eQTLs and 
multi-ancestry eQTL meta-analysis of the brain19 to correlate novel 
loci with gene expression data (Supplementary Tables 10 and 11). 
To correlate potential putative genes with PD risk, we searched the 
significant-eQTL genes and genes near the loci with previously com-
pleted summary-based Mendelian randomization (SMR)20 results 
in European-only data. When comparing the SNPs in novel loci with 
multi-ancestry brain eQTLs19, 28 genes were significant (Supplementary 
Fig. 8 and Supplementary Tables 10 and 11). SMR found 25 genes in four 
novel loci associated with PD risk (Table 2 and Supplementary Table 12). 
Interestingly, PPP6R2 and CENPV expression changes in substantia nigra 
were associated with PD risk. PPP6R2 encodes protein phosphatase 6 
regulatory subunit 2, a regulatory protein for protein phosphatase 6 
catalytic subunit (PPP6C), which is involved in the vesicle-mediated 
transport pathway. Centromere protein V (CENPV) is involved in cen-
tromere formation and cell division.

Discussion
This study is a large-scale GWAS meta-analysis of PD that incorporates 
multiple diverse ancestry populations. From the joint cohort analysis, 
we identified 66 independent risk loci near previously known PD risk 
regions and 12 potentially novel risk loci. Of the putative novel loci, nine 
had homogeneous effects and three had heterogeneous effects across 
the different cohorts. We found 17 additional suggestive loci using fixed-
effects meta-analysis threshold at P < 5 × 10−8 and random-effects meta-
analysis threshold at P < 1 × 10−6. We fine-mapped 23 loci by leveraging 
the diverse ancestry populations. We highlighted tissues and cell types 
associated with PD risk, which were consistent with previous findings1. 
Finally we used SMR to nominate 25 putative genes near our novel loci.

Novel loci contained genes in pathways previously implicated in 
PD. The MTF2 and PPP6R2 loci contain the genes TMED5 and PPP6R2. 
Protein TMED5 localizes to Golgi body21 and PPP6C, regulated by 
PPP6R2, is part of the vesicular transport pathways (https://reactome.
org/content/detail/R-HSA-199977)22, both of which are implicated in PD 
pathogenesis23–28. eQTL and SMR analysis showed association between 
expression changes for PPP6R2 and CENPV in substantia nigra and 
PD risk. Because substantia nigra deterioration is a hallmark patho-
genic feature of PD, PPP6R2 and CENPV merit additional investigation. 
Within a known locus, a new independent signal was found in RILPL2 
(rs28659953). Protein RILPL2 interacts with LRRK2-phosphorylated 
Rab10 to block primary cilia generation29. Genes JAK1 and HS1BP3 are in 
two suggestive loci that were found only in Latin American and African 
populations. JAK1 is one of the proteins in the Janus kinase family, which 
is a critical part of the JAK-STAT pathway and is implicated in cytokine 
and inflammatory signaling30. JAK1 variants have been implicated in 
autoimmune diseases such as juvenile idiopathic arthritis and multi-
ple sclerosis31. HS1BP3, also known as essential tremor 2 (ETM2), has 
been implicated in essential tremor32–34. Based on its sequence, ETM2 
may modulate interleukin-2 signaling35. If these loci are confirmed, 
they would further support the growing appreciation for the role of Ta
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inflammation in PD36. All of the potentially novel PD loci identified in this 
analysis will require additional replication and functional validation to 
elucidate their role in PD pathogenesis. Previous findings in European 
populations found that polygenic risk scores explained 16–36% of PD 
heritability1. Although we did not perform similar tests incorporating 
our novel loci, they may explain additional heritable PD risk.

We found that 26 of the 66 detected known PD loci had nominally 
significant ancestral heterogeneity (PANC-HET < 0.05) and 10 remained 
significant after Bonferroni correction (PANC-HET < 0.05/62 MR-MEGA 
loci) (Fig. 3 and Supplementary Table 3). This heterogeneity may be 
caused by differences in effect sizes and allele frequencies between the 
different populations and thus should be studied as loci with poten-
tially ancestrally divergent risk. 18 of the previous 92 known loci from 
single-ancestry GWASs did not overlap with any genome-wide signifi-
cant loci in the multi-ancestry results at the significance threshold of 
5 × 10−9 (Supplementary Table 13). However, our results do not neces-
sarily invalidate these previous results. First, several of the cohorts 
have small sample sizes, which may increase the influence of sampling 
variation. Another reason may be due to the stringent genome-wide 
significance threshold of 5 × 10−9. Although this is a large PD GWAS 
meta-analysis, the more stringent significance threshold further raises 

the sample size needed to achieve equivalent statistical power. Of the 
17 European loci identified, 3 were significant at the 5 × 10−8 threshold, 
and all 17 loci were at least nominally significant with the MR-MEGA 
method (PMR-MEGA < 5 × 10−6). Lastly, variants may be more specific to 
the population in which they were first identified. 5 of the 17 variants 
had nominal ancestral heterogeneity (PANC-HET < 0.05). It is worth noting 
that there are large differences in statistical power across ancestries. 
Additional population-specific loci will likely reach significance when 
larger sample sizes are available for non-European datasets.

Our fine-mapping isolated several putative causal variants in 
previously discovered loci. TMEM175-rs34311866 has been previously 
identified as functionally relevant to PD risk37, which is consistent 
with our fine-mapping results. Fine-mapped variants in TMEM163, 
HIP1R and CAMK3D were also found to be parts of active or strong 
transcription sites in substantia nigra tissues. Among the fine-mapped 
variants were two missense variants in FCGR2A and SLC18B1, albeit with 
a lower PP than the 7 singular putative variants that we highlighted in 
Table 3. FCGR2A is present in multiple immune-related ontology gene 
sets, further highlighting the potential role of the immune system 
in PD pathology. However, the function of SLC18B1 is still unknown. 
Although the fine-mapping results provided by MR-MEGA are sufficient 
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to identify putative causal variants for loci driven by one independent 
signal, multiple variants in a locus can contribute to complex traits. 
The additive and epistatic effects of multiple causal variants in a locus 
can be difficult to interpret when the effects associated with each 
independent signal are small.

The gene ontology analysis found multiple pathways that may be 
relevant to PD pathology (Supplementary Table 9), including those 
related to mitochondria (response to mitochondrial depolarization) 
vesicles (vesicle uncoating, phagolysosome assembly, regulation of 
autophagosome maturation) tau protein (tau protein kinase activity) 
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and immune cells (microglial cell/macrophage proliferation, and natu-
ral killer T cell differentiation)36. Neither mitochondrial nor immune cell 
pathways were significant in the previous European-only meta-analysis. 
Novel signals from the multi-ancestry approach may have given enough 
power to highlight these ontology terms. Out of 10 ontology terms that 
were significant in the previous European-only meta-analysis1, 4 terms 
were not tested due to version differences in MSigDB and only 2 of the 
remaining terms were significant. However, the other 4 terms were 
still nominally significant at P < 0.05. This may be due to genome-wide 
signals that were less significant due to their heterogeneity across the 
different populations.

Although this is a large multi-ancestry PD meta-analysis  
GWAS, the European population is still overrepresented. Around 
80% of full PD cases are of European descent. Individuals of  
African descent were particularly underrepresented at just 0.5% of 
the effective PD cases. The discoveries in our study warrant future 
efforts to expand studies in more diverse populations. The Global 
Parkinson’s Genetics Program (GP2) is partnering with institutions 
that care for underrepresented populations to generate data for these 
underserved communities all over the world5, and we will continue the 
ongoing analysis as more participants are genotyped. Just as the first 
PD GWASs failed to identify significant signals38,39, we are confident 
that future diverse ancestry GWAS will produce impactful association 
results as sample sizes increase. Further efforts in multi-ancestry  
and non-European GWAS will identify loci that are more rele-
vant to the global population and will continue to facilitate fine- 
mapping efforts to identify the genetic variants that drive these 
associations.
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Methods
Study design and cohort descriptions
We used a single joint meta-analysis study design to maximize sta-
tistical power40. We used datasets representing four different ances-
try groups: European, East Asian, Latin American and African. The 
meta-analysis included 49,049 PD cases, 18,618 PD proxy cases (par-
ticipant with a parent with PD) and 2,458,063 neurologically normal 
controls (Table 1 and Supplementary Table 1). GWAS results of Euro-
pean1, East Asian2 and Latin American3 populations were previously 
reported. African dataset as well as the additional Latin American and 
East Asian PD GWAS summary statistics were provided by 23andMe. 
The Finnish PD GWAS summary statistics was acquired from FinnGen 
Release 4 (G6_PARKINSON_EXMORE). For the FinnGen data, we chose 
the endpoint ‘Parkinson’s disease (more controls excluded)’ (G6_PAR-
KINSON_EXMORE), which excludes control participants with psychiat-
ric diseases or neurological diseases. Although some FinnGen GWAS 
results also include UK Biobank participants, our FinnGen data did not 
include any UK Biobank participants.

23andMe diverse ancestry data
All self-reported PD cases and controls from 23andMe provided 
informed consent and participated in the research online, under a 
protocol approved by the external AAHRPP-accredited institutional 
review board (IRB), Ethical & Independent Review Services (E&I 
Review). Participants were included in the analysis on the basis of 
consent status as checked at the time data analyses were initiated. The 
name of the IRB at the time of the approval was Ethical & Independent 
Review Services. Ethical & Independent Review Services was recently 
acquired, and its new name as of July 2022 is Salus IRB (https://www.
versiticlinicaltrials.org/salusirb). Samples were genotyped on one of 
five genotyping platforms: V1 and V2, which are variants of Illumina 
HumanHap550+ BeadChip; V3, Illumina OmniExpress+ BeadChip; 
V4, Illumina custom array that includes SNPs overlapping V2 and V3 
chips; or V5, Illumina Infinium Global Screening Array. For inclusion, 
samples needed a minimal call rate of 98.5%. Genotyped samples were 
then phased using either Finch or Eagle2 (ref. 41) (RRID:SCR_015991) 
and imputed using Minimac3 (RRID:SCR_009292) and a reference 
panel of 1000 Genomes Phase III42 (GRCh38) and UK10K data43. For this 
study, samples were classified as African, East Asian or Latino using a 
genotype-based pipeline44 consisting of a support vector machine and 
a hidden Markov model, followed by a logistic classifier to differentiate 
Latinos from African Americans. Unrelated individuals were included 
in the analysis, as determined via identity-by-descent (IBD). Variants 
were tested for association with PD status using logistic regression, 
adjusting for age, sex, the first five principal components and geno-
typing platform. Reported P values were from a likelihood ratio test.

MAMA
We performed MAMA of GWAS results using MR-MEGA v0.2 (ref. 7) and 
PLINK 1.9 (RRID:SCR_001757). MR-MEGA performs a meta-regression 
by generating axes of genetic variation for each cohort, which are then 
used as covariates in the meta-analysis to account for differences in 
population structure. Although MR-MEGA was able to generate four 
principal components as axes of genetic variation, three principal 
components visibly separated the super population ancestries and 
explained 98% of the population variance (Supplementary Fig. 7). 
Therefore, we used three principal components to minimize overfit-
ting. MR-MEGA has reduced power to detect associations for variants 
with homogeneous effects across populations. It is therefore recom-
mended to run MR-MEGA alongside another meta-analysis method. 
PLINK 1.9 was used to perform random-effect meta-analysis to detect 
homogenous allelic effects.

Before the analysis, all datasets were harmonized to genome 
build hg19 using CrossMap45 (RRID:SCR_001173) and Python 3.7. All 
variants were filtered by imputation score (r2 > 0.3) and minor allele 

frequency ≥0.001. Only autosomal variants were kept in the final results 
as sex-chromosome data were not available for all ancestries. In total 
20,590,839 variants met the inclusion criteria. However, MR-MEGA 
has a cohort-number requirement that varies based on the number of 
axes of variation. Therefore, 5,662,641 SNPs present in at least 6 of the 
7 cohorts were analyzed in the MR-MEGA analysis. Bonferroni-adjusted 
alpha was set to a more stringent 5 × 10−9 for all MAMAs to account for 
the larger number of haplotypes resulting from the ancestrally diverse 
datasets8. Genomic inflations were measured for all cohorts and the 
meta-analysis. Inflation for cohorts with large discrepancy between 
the case and control numbers was normalized to 1,000 cases and 1,000 
controls. All inflation was nominal and below 1.02 (Supplementary 
Figs. 1–3 and Supplementary Table 1). No genomic control was applied 
prior to meta-analysis.

We identified genomic risk loci within our meta-analysis results 
using Functional Mapping and Annotation (FUMA) v1.3.8 (refs. 11,12). In 
brief, FUMA first identifies independent significant SNPs in the GWAS 
results by clumping all significant variants with the r2 threshold <0.6, 
and then a locus is defined by merging LD blocks of all independent 
significant SNPs within 250 kb of each other. Start and end of a locus 
is defined by identifying SNPs in LD with the independent significant 
SNPs (r2 ≥ 0.6) and defining a region that encompasses all SNPs within 
the locus. Lead SNPs within a locus are determined by further clump-
ing the independent significant variants within the genomic locus 
(r2 ≥ 0.1). The 1000 Genome reference panel with all ancestries was 
used to calculate the r2.

To determine if any associated loci in the meta-analysis were not 
previously identified, all significant SNPs were compared to the 92 
known PD risk variants found in the previous two major meta-analyses1,2. 
Two variants identified in the Latin American admixture population3 
could not be replicated, as the variants and their proxies were removed 
during quality control. If a genomic risk locus contained a significant 
hit in either population within 250 kb, then the locus was considered 
a known hit. Otherwise the locus was considered a novel hit. Forest 
plots and QQ plots were generated using python 3.7 with seaborn 
v0.11.2 and matplotlib v3.5.1. Manhattan plots were generated using 
gwaslab v3.3.11.

Fine-mapping
Fine-mapping was performed using MR-MEGA7, which approximates a 
single-SNP Bayes factor in favor of association. This is reported as the 
natural log of Bayes factor (lnBF) per SNP in the MR-MEGA meta-analysis 
summary statistics. SNPs were selected at meta-GWAS significance 
level (P < 5 × 10−9). PPs of driving the association signal at each locus 
were calculated from the Bayes factor as follows:

πj =
Λj

∑n
j=1Λj

,

where Λj is the Bayes factor of the jth SNP within a locus with n number 
of SNPs. Credible sets of fewer than 5 SNPs with sum PP (πj) greater than 
0.95 were accepted as putative causal variants. We excluded results 
located in the major histocompatibility complex region and the MAPT 
locus due to their complex LD structure.

Estimation of population-specific or shared causal variants at 
associated loci
Proportion of population-specific and shared causal variants (PESCA 
v0.3)10 was used to estimate whether causal variants at the loci identi-
fied in the meta-analysis were population-specific or shared between 
two populations. In brief, genome-wide heritability was estimated for 
the European and East Asian GWAS summary statistics using LD score 
regression6,46. Summary statistics of both populations were intersected 
with common variants with the 1000 Genome reference panels pro-
vided by PESCA, which have already been LD pruned (R2 > 0.95) and 
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low-frequency SNPs removed (minor allele frequency < 0.05). The inter-
sected variants were further split according to independent LD regions 
from the European and East Asian populations. The genome-wide prior 
probabilities of population-specific and shared causal variants were 
calculated using default parameters or as otherwise recommended 
by PESCA; then the results were used to calculate the PP for each vari-
ant. When the lead SNP was unavailable in the results, proxy variants 
(R2 > 0.8) were used to approximate the PP for each variant for East 
Asian and European ancestry using R 4.2.0 and LDlinkR v1.1.2 (ref. 47). 
Other cohorts were not included due to sample size constraints for 
this method.

Functional annotation and GSEA
Functional annotation of the discovery results utilizing publicly available 
annotation data was done using FUMA v1.3.8 (refs. 11,12). The summary 
statistics were annotated by ANNOVAR48 (RRID:SCR_012821) through 
the FUMA platform. Our meta-analysis results were analyzed using 
MAGMA13 (RRID:SCR_001757) to check for enrichment in gene ontol-
ogy terms and gene expression data from tissues in GTEx v8 (ref. 18).  
We tested 16,992 gene sets and gene ontology terms from MSigDB v7 
(ref. 15) as well as single-cell RNA-sequencing expression data from 
mouse brain samples in DropViz16 and human ventral midbrain sam-
ples17. Test parameters were set to default. MAGMA gene analysis was run 
with a custom 1000 Genome reference panel that had a similar propor-
tion of European, East Asian, Latin American and African participants 
as our main analysis. In short, we added all European participants and 
randomly selected participants from the East Asian, Latin American 
and African populations until the ancestry proportions of the refer-
ence panel were matching the effective sample size proportions of our 
study. The MAGMA gene analysis results were then analyzed using 
gene set analysis for ontology terms and gene-property analysis for 
tissue specificity. Results were adjusted for multiple tests using Benja-
mini–Hochberg FDR correction with the alpha of 0.05. The significant 
ontology terms were analyzed again in conditional analyses to identify 
and filter terms that share the same signals. Conditional analyses rerun 
the analyses with significant ontology terms as additional covariates. 
This can identify terms that lose significance when ‘conditioned’ on 
another, which may mean the terms share an underlying signal. When 
a term lost significance while the paired term retained nominal sig-
nificance, the term that was no longer significant was discarded. When 
both terms lost significance, both were retained but highlighted with 
the comment that the pairs need to be interpreted together. Tissue 
level enrichment analysis was done using the pre-processed GTEx gene 
expression dataset provided by FUMA investigators. Single-cell expres-
sion enrichment analyses were performed by uploading the MAGMA 
gene analysis results to the FUMA cell-type analysis tool, which runs the 
MAGMA gene-property analysis with the chosen RNA-sequencing data. 
Additional pathway analyses of genes mapped by FUMA SNP2GENE were 
performed through GENE2FUNC with default parameters.

SNPs in the novel loci were searched in multi-ancestry brain 
eQTL meta-analysis results19 (under Synapse ID syn23204884). We 
used a P-value cutoff of 10−6 as previously described19. eQTL and 
GWAS comparison plots were generated using LocusCompareR49. 
Multi-SNP SMR was used to test if DNA methylation and/or RNA expres-
sion of genes near the novel loci were associated with PD risk20. The 
nearest genes from the lead SNPs, significant genes in MAMA brain 
eQTL results and significant genes in GTEx v8 brain tissue were cho-
sen for SMR. In total, 44 genes near the novel loci were searched in 
a list of previously completed PD SMR results from European-only 
GWAS meta- analysis (https://www.ukbiobank.ac.uk/learn- 
more-about-uk-biobank/news/nightingale-health-and-uk-biobank- 
announces-major-initiative-to-analyse-half-a-million-blood- 
samples-to-facilitate-global-medical-research)18,20,50–56. Only tis-
sues in the central nervous system, digestive system and blood 
were used due to their relevance to PD pathology. Methylation 

probes were annotated using the Bioconductor R package Illumi-
naHumanMethylation450kanno.ilmn12.hg19 v0.6.0 (https://
bioconductor.org /packages/release/data/annotation/html/ 
IlluminaHumanMethylation450kanno.ilmn12.hg19.html). The associa-
tion signals were adjusted using FDR correction with the alpha of 0.05 
and all signals with PHEIDI < 0.05 were removed due to heterogeneity.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
GWAS summary statistics for Foo et al.2 and Loesch et al.3 are available 
upon request to the respective authors. The UKBB genotype and phe-
notype data are available through the UKBB web portal https://www.
ukbiobank.ac.uk/. FinnGen summary statistics are available through 
the FinnGen website https://www.finngen.fi/. GWAS summary statistics 
for 23andMe datasets (post-Chang and data included in Chang et al.57 
and Nalls et al.58) will be made available through 23andMe to qualified 
researchers under an agreement with 23andMe that protects the pri-
vacy of the 23andMe participants. Please visit research.23andme.com/
collaborate/#publication for more information and to apply to access 
the data. An immediately accessible version of the multi-ancestry 
summary statistics is available on the Neurodegenerative Disease 
knowledge Portal (https://ndkp.hugeamp.org/) excluding Nalls et al.58,  
23andMe post-Chang et al.57 and Web-Based Study of Parkinson’s 
Disease (PDWBS) but including all analyzed SNPs. Same summary 
statistics are also available at AMP-PD (https://amp-pd.org/) under 
GP2 Tier 1 access and GWAS Catalog (https://www.ebi.ac.uk/gwas/) 
under accession code GCST90275127 (http://ftp.ebi.ac.uk/pub/data-
bases/gwas/summary_statistics/GCST90275001-GCST90276000/
GCST90275127/). After applying with 23andMe, the full summary statis-
tics including all analyzed SNPs and samples in this GWAS meta-analysis 
will be accessible to the approved researcher(s). MSigDb is available 
at http://software.broadinstitute.org/gsea/msigdb/. GTEx is available 
at https://gtexportal.org/home/. Multi-ancestry brain eQTL data from 
Zeng et al.19 are available at https://hoffmg01.hpc.mssm.edu/brema/. 
eQTL/mQTL/caQTL data used for SMR outside of MetaBrain50 and 
eQTLGen52 are available at https://yanglab.westlake.edu.cn/software/
smr/#DataResource. MetaBrain eQTL data are available at https://www.
metabrain.nl/. eQTLGen data are available at https://www.eqtlgen.
org/. pQTL data from Wingo et al.54 are available upon request to the 
respective author. UK Biobank-Nightingale metabolomic data used 
for SMR are available at https://gwas.mrcieu.ac.uk/.

Code availability
The analysis pipeline code is available on GP2 github: (https://github.
com/GP2code/GP2-Multiancestry-metaGWAS) and deposited on 
Zenodo (https://doi.org/10.5281/zenodo.8045547)59.
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