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Many of nature’s fractal objects benefit from the favorable functionality that results from
their pattern repetition at multiple scales. Our recent research focused on the importance
of fractal scaling in establishing connectivity between neurons. Fractal dimension DA of the
neuron arbors was shown to relate to the optimization of competing functional
constraints—the ability of dendrites to connect to other neurons versus the costs
associated with building the dendrites. Here, we consider whether pathological states
of neurons might affect this fractal optimization and if changes in DA might therefore be
used as a diagnostic tool in parallel with traditional measures like Sholl analyses. We use
confocal microscopy to obtain images of CA1 pyramidal neurons in the coronal plane of
the dorsal rat hippocampus and construct 3-dimensional models of the dendritic arbors
using Neurolucida software. We examine six rodent groups which vary in brain condition
(whether they had lesions in the anterior thalamic nuclei, ATN) and experience (their
housing environment and experience in a spatial task). Previously, we showed ATN lesions
reduced spine density in hippocampal CA1 neurons, whereas enriched housing increased
spine density in both ATN lesion and sham rats. Here, we investigate whether ATN lesions
and experience also effect the complexity and connectivity of CA1 dendritic arbors. We
show that sham rats exposed to enriched housing and spatial memory training exhibited
higher complexity (as measured by DA) and connectivity compared to other groups. When
we categorize the rodent groups into those with or without lesions, we find that both
categories achieve an optimal balance of connectivity with respect to material cost.
However, the DA value used to achieve this optimization does not change between
these two categories, suggesting any morphological differences induced by the lesions are
too small to influence the optimization process. Accordingly, we highlight considerations
associated with applying our technique to publicly accessible repositories of neuron
images with a broader range of pathological conditions.
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1 INTRODUCTION

Fractal objects are abundant in nature because they allow optimal
patterns to be repeated over multiple scales (Bassingthwaighte
et al., 1994; Iannaccone and Khokha, 1996; Frame and Urry,
2016). The dendritic arbors of neurons are fractal tree-like
structures that contribute to complex neural circuits within the
brain. These arbors are highly dynamic structures that influence
how the neuron receives and processes synaptic inputs. Brain
disorders are associated with alterations in neuronal morphology
suggesting the importance of dendrite integrity, including
microstructural relationships, on the overall functioning of
neuronal networks (Kulkarni and Firestein, 2012; Herzog
et al., 2020).

A number of simple metrics have been used to quantify
dendritic arbor morphology such as total length of dendrites
and total number of branch points (Uylings and van Pelt,
2002). For example, dopamine denervation in a Parkinson’s
disease mouse model resulted in reduced dendritic branch
length and number of branch points in D1 and D2 medium
spiny neurons in the striatum (Gagnon et al., 2017). However,
the most widespread method to quantify dendrites has been
Sholl’s analysis (Sholl, 1953), in which concentric rings
emanating from the soma are used to calculate the number
of branches, branch geometry, and overall branching patterns
over distance. For example, Sholl analysis revealed significant
reductions in morphological complexity of both the basal and
apical arbors of neurons from the dorsal CA1 hippocampus in
late-onset Alzheimer’s disease knockout mice compared with
wildtype controls (Mehder et al., 2020). In contrast, the
morphology of ventral hippocampus and sensory cortex
neurons were only minimally reduced in the knockout mice,
demonstrating the specificity of Alzheimer’s pathology to
particular neuronal types and regions within the central
nervous system (Braak and Del Tredici, 2015). Sholl
analysis has also been used to show decreased dendritic
length and radial dendritic complexity of striatal spiny
neurons derived from patients with Huntington’s disease
and treated with progerin to induce age-related changes
(Machiela et al., 2020).

Although Sholl analysis is an established and widely used
method for evaluating neuronal morphologies, it has a number of
issues and limitations. Although some 3-dimensional Sholl
methods exist (Ruthazer and Cline, 2002; Binley et al., 2014;
Gobran et al., 2020), Sholl analysis is typically performed using a
2-dimensional array of concentric rings positioned over a 2-
dimensional tracing of a neuron. Therefore, distance in the
z-plane is discounted and two branching points within the
same Sholl ring can be far apart in the z-direction. Moreover,
the output of Sholl analysis is complicated by the fact that it
reveals differences by ring distance, which cannot be condensed
into a single metric. This makes comparisons between different
groups of neurons challenging, although we point out that recent
work demonstrates how the Sholl output can be broken down
into a branching statistic more amenable for comparing across
groups (Bird and Cuntz, 2019). Sholl analysis usually only
measures dendritic complexity over a single scale (the ring

size, which is normally 10 or 20 μm), although comparisons
across several scales are possible by comparing a neuron’s
entire arbor with subregions of the arbor (Kutzing et al., 2010).

In contrast to these limitations, fractal geometry may be better
suited for characterizing natural phenomena such as neuronal
morphology as it allows a 3-dimensional measure of the neuron
over multiple scales and is capable of generating a single metric of
complexity (Smith et al., 2021). Indeed, fractal methods have
already been used in a diverse range of neurobiology
investigations. For example, the ability to grow electrodes
using nanocluster deposition that resemble the shape of the
natural neurons has been developed for potential application
in retinal implants (Fairbanks et al., 2011; Watterson et al., 2016).
Fractal dimension (D) serves as a measure of morphological
complexity over multiple scales; a high D corresponds to
patterns with relatively large amounts of fine structure and
therefore high complexity. This metric has been used to
successfully discriminate populations of spinal cord, cortical,
and retinal ganglion neurons (Elston and Zietsch, 2005;
Milosević et al., 2005; Jelinek et al., 2011; Puškaš et al., 2015).
Moreover, several studies have shown the value of fractal analysis
for identifying neuronal pathology. A significant reduction in
dendritic complexity of pathological Purkinje cells in the mouse
cerebellum was shown using a 3-dimensional fractal analysis
(Kim et al., 2011). Fractal dimension has also been used to
identify pathology in retinal vasculature after strokes and in a
variety of neurodegenerative disorders (Lemmens et al., 2020).

Here, we aim to assess whether fractal analysis is a useful tool
for detecting pathology in CA1 pyramidal neurons in the
hippocampus of rats that have lesions in the anterior thalamic
nuclei (ATN). ATN dysfunction is a recognized cause of
diencephalic amnesia and produces a comparable pattern of
memory deficits to that caused by hippocampal system injury
(Gold and Squire, 2006; Carlesimo et al., 2011; Aggleton et al.,
2016). In rats, ATN lesions result in severe spatial memory
deficits which are accompanied by functional changes in the
hippocampus such as reduced phosphorylated CREB (pCREB)
and immediate early gene (IEG) markers such as c-Fos (Jenkins
et al., 2002; Dumont et al., 2012; Dupire et al., 2013; Dalrymple-
Alford et al., 2015).

The current investigation will build on previous experiments
by some of the authors showing that ATN lesions reduced basal
and apical spine density in hippocampal CA1 neurons
(Harland et al., 2014). In this same study, groups of ATN-
lesion and sham-operated rats (SH) were either housed post-
operatively in standard group cages (STD) or exposed to an
enriched environment (ENR); the latter used a larger home-
cage, additional cage-mates and different daily combinations of
objects. A month of environmental enrichment ameliorated
spatial memory performance as well as basal and apical CA1
spine density in ATN-lesioned rats to levels comparable to that
of the standard-housed controls. Moreover, we found that
sham rats exposed to the enriched environment also had
increased CA1 spine density compared with standard-
housed shams. However, it is unclear whether enrichment
will result in increased CA1 dendritic complexity in ATN-
lesioned rats.
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Other researchers examining the effects of enrichment in
intact animals have reported that increases in CA1 spine
density are accompanied by increased branching and length of
CA1 hippocampal neurons (Faherty et al., 2003; Kozorovitskiy
et al., 2005). Both subicular and basal forebrain lesions resulted in
a reduction in the complexity of hippocampal CA1 neurons but
subsequent enrichment resulted in a reversal of these deficits in
only the subicular lesioned rats (Dhanushkodi et al., 2007;
Fréchette et al., 2009). Therefore, we would expect ATN
lesions to reduce CA1 neuronal complexity because the ATN
is connected to the hippocampus via the subicular complex and
retrosplenial cortex (Shibata, 1993).

Researchers have also shown that spatial memory training
(TR) can result in increased dendritic spines in the hippocampal
CA1 (González-Ramírez et al., 2014). In the current study, we will
include rats that were exposed to spatial memory training as well
as pseudo-training (PS), which provided comparable task-related
experience but no explicit training on the spatial memory task. In
total, dendritic CA1 complexity will be assessed in six groups of
rats: ATN-lesion standard-housed trained (ATN-STD-TR);
ATN-lesion enriched trained (ATN-ENR-TR); sham-operated
standard-housed trained (SH-STD-TR); sham-operated
enriched trained (SH-ENR-TR); sham-operated enriched
pseudo-trained (SH-ENR-PS); and ATN-lesion enriched
pseudo-trained (ATN-ENR-PS).

Fractal analysis will be employed to determine the structural
complexity of neurons in rats taken from these six groups. In a
recent study, we related the fractal dimension of CA1
hippocampal neurons, DA, to the optimization of competing
functional constraints—the ability of dendrites to reach out
and connect to other neurons versus the costs associated with
building the dendrites (Smith et al., 2021). Within this model,
different neuron types were predicted to have different DA values
depending on the relative importance of connectivity and
material cost, with higher DA values indicating a greater
emphasis on connectivity. Here, we hypothesize that
pathological states of neurons will affect this fractal
optimization and consider whether changes in DA might
therefore be used as a diagnostic tool. Specifically, we aim to
examine differences in neuron fractal behavior for each of the
six rodent groups specified above and further categorize these
groups into those with and without lesions to quantify the
factors that impact the optimization process. By relating
changes in form to changes in function, our approach will
improve on simple pattern characterization techniques if
successfully implemented.

2 MATERIALS AND METHODS

2.1 Rodents
Eighty PVGc male hooded rats were used (8–10 months old,
between 366 and 456 g at surgery). The rats were maintained in
reversed 12-h light schedule (8 a.m. to 8 p.m.) in their colony
room so that all behavioral testing was conducted during the dark
phase when activity levels are higher. Body weights were
restricted to 85%–90% of free-feeding weight during testing,

with free food access for surgery, recovery, and during
subsequent 40-day continuous enrichment period. All
protocols in this study conformed to the NIH Guide for the
Care and Use of Laboratory Animals and were approved by the
Animal Ethics Committee, University of Canterbury.

2.2 Lesion Surgery
All rats were housed in groups of 3 or 4 per standard plastic cage
(50 cm × 30 cm × 23 cm high) before surgery. Based on
preoperative spatial working memory performance in a cross-
maze, matched pairs of rats were randomly assigned to either the
anterior thalamic nuclei (ATN) or sham (SH) lesion group. Rats
were anesthetized intraperitoneally with ketamine (70 mg/kg)
and domitor (0.5 mg/kg) and placed in a stereotaxic frame
with atraumatic ear bars (Kopf, Tujunga, CA, United States)
and the incisor bar −7.5 mm below the interaural line. Two
infusion sites in each hemisphere were directed at the
anteroventral nucleus (AV), followed by a single infusion in
each hemisphere directed at the anteromedial nucleus (AM).
Each surgery used 1 of 5 anterior-posterior coordinates relative to
an individual rat’s bregma to lambda (B-L) distance. For the AV
lesions, the AP coordinates from bregma were: −2.4 for B-L ≤ 6.4;
−2.45 for B-L = 6.5 to 6.8; −2.5 for B-L = 6.9 to 7.2; −2.55 for B-L ≥
7.3. The AV infusions were made at ventrality −5.63 mm followed
by −5.73 from dura at ±1.52 mm lateral to the midline. The AM
infusion was placed 0.1 mmmore anterior than the AV sites, with
laterality ±1.20 mm and ventrality −5.86 mm. A microinfusion
pump (Stoelting, Reno, NV, United States) delivered either
0.16 μl (each of the two AV sites per hemisphere) or 0.20 μl
(single AM site) of 0.15 M N-methyl-D-aspartic acid (NMDA;
Sigma, Castle Hill, NSW, Australia) in phosphate buffer (pH 7.2)
at 0.04 μl/min using a 1 μl Hamilton syringe. The needle was left
in situ at each site for 3 min postinfusion. For SH surgeries, the
needle was lowered to 1.50 mm above lesion coordinates without
infusion.

2.3 Housing
All rats were housed individually for 7–11 days to allow recovery
from surgery and then were re-caged in groups of 4 or 5 for post-
surgery cross-maze testing. Rats then received 40 days of
continuous housing in either an enriched environment (ENR)
or standard caging (STD) during which no behavioral testing
occurred. Rats that continued with standard caging were housed
with new cage-mates. Both types of housing included ATN and
SH rats within each cage. ENR rats were housed with 11 or 12 new
cage-mates in a large wire-mesh cage (85 cm × 60 cm × 30 cm
high) with all the enrichment objects and the position of food and
water changed daily using a standardized arrangement of objects
that differed every day throughout the enrichment period
(Harland and Dalrymple-Alford, 2020). Placement of the
enrichment cages within the colony room was changed every
fourth day. After 40 days of these different housing conditions,
the enriched groups were re-housed in groups of 3 or 4 in
standard housing with cage-mates from the same enriched
environment cage during the day and enriched housing at
night (~6 p.m. to ~10 a.m.) for the remainder of the
experiment. This procedure facilitated behavioral testing and
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the provision of the daily food ration after testing (~5 p.m.) when
all rats were in standard cages.

2.4 Spatial Memory Training
Spatial working memory was tested for rats in the trained (TR)
group using a T-maze configuration embedded in a cross-maze, a
task that requires the room’s spatial cues to be used to locate the
goal. The same apparatus, room, and distal cues were used for
pre-surgery, post-surgery, and post-enrichment cross-maze
testing. Rats were familiarized and pre-trained on the maze
pre-operatively over a week and then re-trained for 1 day at
the start of post-surgery and post-enrichment testing.

Before surgery, all rats were trained to criterion (87.5%
accuracy over four consecutive sessions) for a minimum of 15
and maximum of 32 sessions. Six trials were conducted per
session throughout testing, with each trial consisting of a
sample and test run with a ~5 s intra-trial delay in the start
area. In the sample run, the rat was placed in one of the start areas
for 8 s before the door was lifted and an arm block forced it to
enter either the left or right goal arm pseudo-randomly (Fellows,
1967) for a 0.1 g chocolate reward. In the test run, the rats were
held in 1 of the 2 start areas for 8 s again before being allowed a
choice of either goal arm (neither arm was blocked) but was only
rewarded (with 0.2 g of chocolate) for entering the goal arm that
was not visited in the sample run. For both sample and test runs,
once a rat entered a goal arm it was given 10 s to eat the chocolate
and/or look around. The rat was returned to the home cage in the
testing room between trials until all its cage-mates had received
their trial, resulting in an inter-trial interval of about 3–4 min.

All rats were retested in the cross-maze for 10 sessions post-
surgery to determine the effects of the surgery (lesion or sham) on
spatial working memory. All rats were re-tested for another 10
sessions at 1 week post-enrichment, however, pseudo-trained
(PS) rats received a different cross-maze test procedure to the
TR rats. Each SH-ENR-PS and ATN-ENR-PS rat was yoked to a
SH-ENR-TR and ATN-ENR-TR rat, respectively, receiving an
identical sample run and reward. Instead of a regular test run, PS
rats received a second forced choice (pseudo-test) run which, for
any given day, was pseudo-randomly “always left” or “always
right” for that day.

After post-enrichment cross-maze testing, all rats also received
4 days of familiarization and pre-training in an 8-arm radial maze
for 1 or 2 days. For each training session, the food-wells at 7 of the
arms were baited with 0.2 g of chocolate each and 1 armwas never
baited (pseudo-randomly varied across rats) to increase the
spatial demands of the task. Arms were pseudo-randomly
repositioned at the start of each day’s testing so that the
unbaited arm for each rat represented a fixed location in the
room. In any session, the rat was removed once all seven
chocolate rewards were claimed or allowed a maximum of 20
arm visits or 10 min in the maze. At the start of the session the rat
was placed in the central hub for a 5 s delay before all the doors
were simultaneously lifted. Once the rat entered an arm, all other
doors were closed while the rat ran to the food well and then
returned to the central hub, followed by closing that door and
another 5 s delay. Testing was conducted on consecutive days for
7 days a week. The task was run for a minimum of 15 days and a

maximum of 35 days, or until the rat reached a criterion of 2 out
of 3 sessions without visiting the unbaited arm and had made no
more than 5 working memory errors in total over the 3 sessions.

The SH-ENR-PS and ATN-ENR-PS rats were pseudo-
randomly designated single arm locations (not a physical maze
arm). Their procedure matched the other rats, except with 10
visits to their designated arm, which was re-baited each time. For
a more detailed description of the spatial working memory tests
described above and the apparatuses involved, see the previous
study (Harland et al., 2014).

2.5 Histology and Model Reconstruction
The rats were euthanized with sodium pentobarbital 24 h after
completion of the radial-armmaze task. The brains were removed
fresh without perfusion and a 3 mm thick slab encompassing the
anterior thalamic region was postfixed in 4% 0.1 M
paraformaldehyde and cut into 50 μm coronal sections using a
vibratome (Campden Instruments, London, United Kingdom).
Cresyl violet staining was used to evaluate the thalamic lesions by
an experimenter blinded to group status and behavioral data. The
lesion areas were drawn on electronic copies of the Paxinos and
Watson rat brain atlas (Paxinos and Watson, 1998) so that
automated pixel counts of the damaged regions could be used
to estimate lesion volumes by factoring in the distances provided
by the atlas. As in previous studies (Mitchell and Dalrymple-
Alford, 2006), only rats with lesions that encompassed 50% or
more of the ATN and less than 40% damage to the adjacent dorsal
medial and lateral thalamic nuclei were included for analysis.
Lesion failures occurred in 18 rats, which were not processed
further (14 had minor ATN damage; 2 had unilateral lesions; 1
had greater than 40% damage to adjacent lateral thalamic region;
1 had fornix damage). The final number of rats in each group
were: 8 in ATN-ENR-PS, 9 in ATN-ENR-TR, 12 in ATN-STD-
TR, 9 in SH-ENR-PS, 14 in SH-ENR-TR, and 10 in SH-STD-TR.

Additionally, a 4 mm block containing the hippocampus was
cut in the coronal plane and processed with a metallic Golgi-Cox
stain, which stains 1%–5% of neurons so that their cell bodies and
dendritic trees can be visualized. 200 μm thick coronal brain
sections spanning the bilateral dorsal hippocampus were taken
from these tissue blocks using a vibratome. A Leica laser scanning
confocal microscope (model SP5, Wetzlar, Germany) was used to
collect high-resolution image stacks from these coronal brain
sections. The image stacks were captured using a 20× glycerol
objective lens with a 0.7 numerical aperture, providing an x and y
resolution of 0.4 μm. The step size (z distance between image
stacks) was 2 μm. Dendritic arbors were manually traced through
the image stacks using Neurolucida38 (MBF Bioscience,
Williston, VT, United States) and reconstructed into 3-
dimensional models comprised of a large set of connected
hollow conical cylinders. The models were then exported to
the Wavefront obj format. The analysis of these models was
done by authors of this study that were blinded to rat ID numbers.

2.6 Arbor Radius Calculation
In this study, we define the arbor radius, RA, of a neuron as its
radius of gyration. This can be measured as the root mean square
distance between any two points on the arbor (Caserta et al.,

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9325984

Rowland et al. Fractal Diagnostic Probing Neuronal Connectivity

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


1995). However, for reconstructions of arbors in which the
lengths of the dendritic segments (i.e., the cylinders)
comprising the arbor are not uniform, RA can also be
calculated as

R2
A � 1

L2
T

∑
K

i�1
∑
K

j�1
δliδlj(ri − rj)

2

where LT is the total length of all the dendrites within the arbor,
δli is the length of dendritic segment i, ri is the position vector of
dendritic segment i, and K is the total number of dendritic
segments (Wen et al., 2009).

2.7 Modified Sholl and Cumulative Mass
Analyses
Traditionally, Sholl analyses of neurons are performed by
counting the number of intersections of dendritic branches
with concentric rings (in 2 dimensions) or spheres (in 3
dimensions) of increasing radii centered at a neuron’s soma.
In this study, we developed MATLAB code that employs a
modified version of a traditional 3-dimensional Sholl analysis
that calculates the number of intersections, NI, of a neuron’s
dendritic branches with concentric spheres of increasing radii, r,
averaged across spheres centered at 25 randomly selected
locations on a neuron’s arbor within a distance of RA/

�
2

√
of

the center of mass of the arbor (Wen et al., 2009). This sampling
of many local origins rather than just one origin centered on the
soma accommodates potential variations arising from some parts
of the neurons possessing different structural qualities than
others. Restricting the selection of local origins to be within
RA/

�
2

√
of the center of mass of the arbor reduces the number

of spheres that have large portions extending beyond the arbor’s
periphery. This approach also allows alignment with the
cumulative mass fractal analysis which similarly samples many
locations (Caserta et al., 1995).

To perform a cumulative mass fractal analysis (also referred to
as the mass-radius method) of a neuron’s arbor, we developed
MATLAB code that calculates Lin, the total length of all dendrites
within concentric spheres of increasing radii, r, averaged across
randomly selected sphere centers using the same process as the
modified Sholl analysis. The range of r examined is also the same
as that used in the modified Sholl analysis. For a neuron with
fractal branches, the mass dimension, DM, of its arbor can be
measured from this cumulative mass analysis using the following
relationship (Caserta et al., 1995; Milosević et al., 2005):

Lin ~ rDM

DM is referred to as the mass fractal dimension because it
measures the change in cumulated mass of the object as a
function of the size of the region considered (relating length
to mass assumes that the branch width does not vary
substantially, which is a reasonable approximation for the
cylindrical segments of our neurons). Thus, the slope of a
double logarithmic plot of Lin versus r provides a quantitative
value of DM. However, once the radius of a sphere reaches a large

enough value that the entire arbor is contained within the sphere,
Lin will become equal to LT. As such, this power-law scaling only
holds over a finite range of r. Our selection of the scaling range for
the fit was chosen to be consistent with the scaling range
examined in the fractal box-counting method developed in our
previous work (Smith et al., 2021), which we briefly
describe below.

2.8 Box-Counting Analysis
Together with the cumulative mass analysis, our study employed
a second traditional fractal analysis technique. Specifically, we
performed a 3-dimensional box-counting analysis to determine
the covering fractal dimension, DA, of the neuron arbors. By
placing an arbor into an array of discretized cubes “boxes” with
side-length, Lbox, and counting the number of cubes occupied by
the arbor, Nbox, we can use the following relationship to
determine the arbor’s “covering” fractal dimension:

Nbox ~ L−DA
box

Given that an arbor has a limited physical size and that the
reconstructions we examined are created with a limited
resolution, this power-law scaling will only hold over a finite
range. At the fine size scale, we limited Lbox to be greater than
2 μm as the median length and width of the dendritic segments
comprising our reconstructed models are 2.6 and 1.4 μm,
respectively. This helps avoid resolution effects arising from
the segment shapes. At the coarse scale, we limited Lbox to be
less than one fifth of the largest extent of the arbor in the x, y, or
z-directions to ensure sufficient counting statistics. Within these
limits, a straight line was fitted for all sets of points that range over
at least an order of magnitude on the log-log plot of Nbox versus
Lbox and the fit with maximal R2 was chosen to measure DA.

2.9 Distorting Arbor Morphology
Using the techniques developed in our previous study (Smith
et al., 2021), we created distorted versions of the reconstructed
neuron arbors by simultaneously adjusting the forking and
weaving behavior of the arbor branches. Each branch is
defined by the set of connected segments between either two
forking points of a dendrite, a forking point and the terminal
point of a dendrite, or a forking point and the initial point on the
neuron’s soma that a dendrite grows out from. We define the
weave angles as the angles between the branch’s consecutive
segments and the fork angles as the first weave angle of a branch.
By multiplying the set of all fork and weave angles in an arbor by a
constant factor α, we explore how changes in neuromorphology
track with changes in the fractal dimension of an arbor. In the
current study, we examined a range of α from 0.5 to 2 in steps of
0.25 (Supplementary Figure S1), yielding a total of 1,404
distorted arbors. The limits of this α range are motivated by
the need to avoid direct overlap between branches within an arbor
(a non-physical scenario). As α decreases below 0.5 (especially as
it approaches 0), the amount of overlap between adjacent
branches near forking points increases, and as α increases
above 2.0 the arbors branches become so tortuous that
intersections between separate branches become unavoidable.
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2.10 Measurement of Connectivity and
Material Cost
The competing functional constraints examined in this study are
connectivity, C, and material cost, M, and these were measured
using MATLAB code developed in our previous study (Smith
et al., 2021). Briefly, to measure C we orthogonally projected a
neuron’s dendritic arbor onto a 2-dimensional plane from a given
viewing angle, uniformly expanded the branch widths of this
projection by 2 μm (this accounts for the potential growth of
spines in the space around a branch), calculated the profile area of
this expanded projection, and then averaged this expanded profile
area over all possible viewing angles of the arbor. Finally, we then
normalized this averaged area by the surface area of the convex
hull containing the arbor (this accounts for variations in absolute
size between arbors). We measured M by calculating the volume
occupied by a neuron’s dendritic arbor (this is a measure of the
mass of the arbor under the assumption that the density of its
dendrites is constant throughout) and normalizing this by the
volume of the convex hull containing the arbor.

2.11 Statistical Analysis
All statistical analyses conducted within this study were done using
functions available in MATLAB’s Statistics Toolbox. Specifically,

when comparing the mean values of a parameter between the six
rodent groups, we performed a one-way ANOVA followed by a
post-hoc Tukey-Kramer test at the 5% significance level.

3 RESULTS

Figure 1A shows an example image obtained using confocal
microscopy of CA1 pyramidal neurons in the coronal plane of
the dorsal rat hippocampus. Figure 1B shows an example z-stack
used during reconstruction of a neuron’s arbors. Axonal and
dendritic arbors extend from the neuron somas located in the
stratum pyramidale of the CA1 region. Although the dendritic
arbor features two component arbors (apical and basal), here we
focus on the basal arbor (Figures 1A,C) whose complex branching
patterns extend into the neighboring stratum oriens where they
collect signals from the axons of other neurons. As an indicator of
arbor size, the arbor radius, RA, varies between 68 and 134 μm
across all examined basal arbors (234 in total), with amean value of
97 μm.Wenote that when comparing themean RA values across all
six rodent groups, no significant difference was found.

We begin our investigation by considering the modified
version of the traditional Sholl analysis and the cumulative

FIGURE 1 | (A) A confocal microscopy image in the x-y plane showing the basal portion of a neuron. The scale bar corresponds to 50 μm. (B) A z-stack of confocal
microscopy images that are used in the reconstruction of the neurons. (C) A completed 3-dimensional reconstruction of a neuronwith its basal arbor in black and soma in
cyan. (D) The results of a modified Sholl analysis (red) measuring the average number of intersections of dendrites,NI, with a sphere surface of radius r, and a cumulative
length analysis (blue) measuring the total length of all dendrites, Lin, within a sphere of the same radius. These curves represent the mean behavior across all basal
arbors within the SH-ENR-TR group and the shaded region around each curve shows the standard error from the mean. The inset shows an example neuron’s basal
arbor with its arbor radius,RA, denoted by the red dashed ring and example sphere radii used in the analyses denoted by the concentric cyan rings. The black dashed line
at 98 μm indicates the mean arbor radius within the SH-ENR-TR group. The qualitative behavior of the relationships seen in (D) are consistent across all six groups.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9325986

Rowland et al. Fractal Diagnostic Probing Neuronal Connectivity

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


mass analysis. Figure 1D shows the relationship between the
average number of dendritic intersections, NI, and the sphere of
radius r for the SH-ENR-TR group. As r increases, we see NI

initially increase to a maximum of 21 at r = 73 μm, followed by a

decrease as r nears the mean arbor radius of 98 μm. While the
increase reflects the fractal character of the repeating patterns
established by the dendrites (Milosević et al., 2005; Wen et al.,
2009), the decrease is a consequence of the measurement

FIGURE 2 | Comparison of the results of modified Sholl analyses showing the average number of intersections of dendrites, NI, with a sphere surface of radius r
between the basal arbors in the SH (blue curve) and ATN (red curve) categories. Each curve represents the mean behavior across all basal arbors within the
corresponding category and the shaded region around each curve shows the standard error from the mean within that category. For r ≥ 78 μm, the NI values of the SH
category are significantly higher (p ≤ 0.01) than the ATN category.

FIGURE 3 | (A) A scaling plot of the cumulative length analysis showing the total dendritic length, Lin, within a sphere plotted against its radius r. The left inset shows
rings with a radius of 5 μm at 3 example locations on a neuron while the right inset shows spheres with a radius of 25 μm at the same locations. (B) A scaling plot of the
number of boxes occupied by a neuron,Nbox, plotted with respect to the size of the boxes, Lbox. The left inset shows a representation of the space occupied by a neuron
at a box size of 3.1 μm while the right inset shows the same neuron at a box size of 20.3 μm.
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technique—it reflects the increased chance of the larger outer
sphere surfaces reaching beyond the space occupied by the
dendrites. However, its onset can be impacted by any changes
in the fractal character towards the neuron periphery. Figure 1D
also shows the results of the cumulative mass analysis which
charts the total length of dendrites, Lin, within a sphere plotted
against r and reveals a gradual increase that slows in the range of r
accompanied by the decrease in NI. Equivalent relationships for
all six rodent groups can be found in Supplementary Figure S2.
We note that the qualitative behavior of these relationships is
consistent across all six groups. Interestingly, if we collect the six
rodent groups into SH and ATN categories to investigate the
impact of lesions, we find that the SH category has significantly
higher (p ≤ 0.01) NI values if we consider the Figure 2 data in the
range r ≥ 78 μm.

In Figure 3, we compare the two methods of fractal analysis
employed in this study. Figure 3A shows the measurement of the
mass dimension,DM, associated with the cumulative mass analysis,
while Figure 3B shows the measurement of covering dimension,
DA, associated with the box-counting analysis. The results seen in
both panels of Figure 3 correspond to the same neuron. Although
the dimension measurements of both methods are in agreement
with one another, we note that the results of the linear regression in
the box-counting analysis, yielding DA = 1.40 ± 0.01 (R2 = 0.9993),
correspond to a better fit than the results of the cumulative mass
analysis, yielding DM = 1.42 ± 0.05 (R2 = 0.9926).

Figure 4 presents box plots of DM and DA for the six rodent
groups and reports the levels of significance between them. No
significant differences are found when comparing mean DM

values across all six groups. However, we find that the mean
DA value of the SH-ENR-TR group is significantly higher when
compared to the ATN-ENR-TR (p ≤ 0.05), ATN-STD-TR (p ≤
0.05), and SH-STD-TR (p ≤ 0.001) groups. Due to our interest in
the impact of lesions and also because of the limited amount of
data in each group (ATN-ENR-PS: n = 41, ATN-ENR-TR: n = 41,
ATN-STD-TR: n = 47, SH-ENR-PS: n = 31, SH-ENR-TR: n = 42,
SH-STD-TR: n = 32), we again collect the neurons into the ATN
(n = 129) and SH (n = 105) categories. Interestingly, when
comparing the mean DA value to the mean DM value for each
group or category, the mean DA value is consistently lower. We
note that DM and DA belong to a spectrum of dimensions and
their magnitudes can be compared using a multi-fractal analysis
(Fernández et al., 1999; Jelinek et al., 2013). In our case, the box-
counting analysis serves as a more global measure of fractality
because it accommodates the whole arbor while the cumulative
mass analysis is biased towards the central section (through its
restriction of the local sphere centers to be within RA/

�
2

√
of the

center of mass of the arbor). If the dendrites start to, for example,
straighten or fork less towards the arbor periphery, a dimension
that measures the whole arbor would be expected to be lower than
one that focuses on the central region. Although the differences
betweenDA andDM are relatively small for our neurons, based on

FIGURE 4 | (A) Box plot of the mass fractal dimension, DM, with respect to the six rodent groups. The far-right box plots show the results when collecting the six
rodent groups into the ATN and SH categories. No significant difference in DM exists between any of the groups. (B) The same as (A) but for the arbor fractal dimension,
DA. Any significant difference between the SH-ENR-TR group and the other five groups is indicated by the horizontal lines connecting the groups. The diamond-shaped
markers seen in some of the groups indicate outliers within that group. The significance markers * and *** correspond to p ≤ 0.05 and p ≤ 0.001, respectively.
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this potential effect and also on the relative qualities of the
associated fits (Figure 3), we will focus on DA for the
following connectivity-cost optimization analysis because its
associated parameters similarly quantify the whole arbor.

We stress that the scaling range over which the neuron’s arbor
can be described by DA is limited (typically within 3–30 μm),
particularly when compared to mathematical fractals. This is
inevitable because the fine and coarse scale limits are influenced
by the widths of the branches and the extent of the arbor. However,
our previous optimization analysis demonstrated that this scaling
behavior is so effective that its limited range is sufficient to optimize
the connectivity process (Smith et al., 2021). Nevertheless, because
of the narrow scaling range, in Supplementary Figure S3 we
confirm theDA values using an analysis of self-similarity employed
in a previous study (Wen et al., 2009) which plots RA against the
total dendritic length, LT, across all the neurons they examined to
measure the self-similarity exponent, μ. Employing the expressions
RA ~ LvT and μ � 1

] − 1, we obtain μ = 1.4 ± 0.2 which agrees closely
with the mean DA of 1.41 measured across all arbors we examined.

Our previous analysis demonstrated that DA maps the balance
between the neuron’s potential to connect to its neighbors and the
associated operational and material costs (Smith et al., 2021). For
simplicity, here we will focus on material costs. In Figures 5A,C,
we show the dependence of connectivity, C, and material cost,M,
on DA for the combined SH category. The observed rise in C as a
function of DA occurs because the increased amount of fine
dendritic structure of high DA arbors increases their profiles
(Materials and Methods Section 2.10). This increase in fine
structure also causes a rise in M. Figures 5B,D shows the
same plots but for the combined ATN category. As was done

in our previous analysis, the fits of C and M versus DA include
both natural and distorted versions of the neurons’ arbors in
which we separately adjusted either the forking or the weaving
behavior away from the natural state. However, in contrast to the
previous study, here we use distorted arbors that have had their
forking and weaving behavior simultaneously adjusted away from
the natural state. We use this distortion procedure to generate
additional “synthetic” arbors for Figures 5A–D. The values of C
andM in Figures 5A–D have been normalized by dividing by the
maximum value within the observed range of DA, which is
1.33–1.70 for the SH category and 1.34–1.60 for the ATN
category. For clarity, the plotted range of DA has been limited
to 1.32–1.60. This excludes only four outliers within the SH
category.

In Figure 5E, we examine the optimization condition by
plotting the connectivity-cost measure, RCM, as a function of
DA, where we define RCM by the following equation:

RCM � ( dC
dDA

)
( dM
dDA

)

We note that because RCM features derivatives, we expect the
analysis to be noisy due to sensitivity to scatter in the data. This
sensitivity motivates our addition of the distorted arbors in
Figures 5A–D as a strategy to increase the number of points
in the data set and so improve the fit. This strategy is possible
because the distorted neurons follow a similar behavior as the
natural arbors (Smith et al., 2021). According to our model, a
peak in RCM is expected to occur at the DA value at which
optimization occurs, DO. The observed peaks in RCM occur at

FIGURE 5 | Connectivity, C, plotted against arbor fractal dimension, DA, for the (A) SH and (B) ATN rodent categories. Mass cost,M, plotted against arbor fractal
dimension, DA, for the (C) SH and (D) ATN rodent categories. (E) The ratio, RCM, of the derivates of the fits of C andM for each rodent category. (F) Histogram showing
the number of neurons, N, across the range of DA values for the natural, undistorted basal arbors for the SH and ATN rodent categories. The legend in the upper-right
corner of (E) applies to all of the figure panels. (A–D), the underlying data corresponds to both natural and distorted basal arbors; the broad, pink lines correspond
with binned averages of the data; and the red and blue curves correspond to third degree polynomial fits to the data.
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DO values of 1.40 and 1.41 for the SH and ATN categories,
respectively. Interestingly, in Figure 5F we see that the peaks of
the histograms of DA corresponding to the natural, undistorted
basal arbors occur very close to the peaks in RCM, indicating that
the majority of neurons in both categories have basal arbors near
the optimization condition. However, the differing conditions
have not impacted the DA values at which optimization occurred.
Finally, even though we stress the need to categorize because of
the low numbers in the individual groups, we do note that the
mean C value of the SH-ENR-TR group (presumably the group
with the three positive conditions) is higher than the other
groups, but not significantly so.

4 DISCUSSION

Given the central role of neurons as the brain’s “wiring”, our
previous research focused on the importance of fractal scaling in
establishing connectivity between neurons.DA was shown to relate
to the optimization of competing functional constraints—the
ability of dendrites to reach out and connect to other neurons
versus the costs associated with doing so. Within this model,
different neuron types were predicted to have different DA

values depending on the relative importance of connectivity and
material cost with higher DA values indicating a greater emphasis
on connectivity. In the current investigation, we hypothesize that
pathological states of neurons might also affect this fractal
optimization and consider whether changes in DA might
therefore be used as a diagnostic tool. This analysis represents
an appealing development because it relates form to function
rather than relying purely on a pattern characterization.

We have tested this hypothesis by examining six rodent groups
which varied in brain condition (whether or not they had lesions
in the anterior thalamic nuclei) and experience (their housing

environment and experience in a spatial task). The optimization
process showed that the neurons optimized their connectivity and
material cost: when the neurons were collected into SH and ATN
categories, the majority of neurons were found to cluster around
the optimized fractal dimension, DO. However, based on previous
research, we expected that these conditions might influence the
DA values of the associated neurons. In contrast, we found that
the optimization analysis does not reveal any significant change
in the DA value between the two categories, suggesting that the
differences induced by lesions in the anterior thalamic nuclei are
too small to be detected at the small size scales probed by the
fractal analysis (approximately 3–30 μm).

Although our modified Sholl analysis of the SH and ATN
categories (Figure 2) does not reveal any differences between
them at small size scales (consistent with the fractal analysis), it
does highlight a drop in morphological complexity at the large
scales for the ATN category, suggesting that most changes are
occurring in the arbors’ periphery. This would be consistent with
a retraction of the CA1 dendritic tree, which may be related to
changes in hippocampal molecular markers of plasticity after
ATN lesions (Dumont et al., 2012; Dupire et al., 2013). We also
note that in Figure 4B the mean DA value of the SH-ENR-TR
group (nominally the three positive conditions) is significantly
higher than most of the other groups indicating that this group
has the highest morphological complexity. This is in agreement
with previous reports that exposure to environmental enrichment
increases hippocampal CA1 dendritic complexity (Faherty et al.,
2003; Kozorovitskiy et al., 2005). In contrast, the mean DM value
has no significant differences between any groups. This is
consistent with our earlier point that, whereas DA samples the
whole arbor,DM focuses only on its central region and therefore is
likely to be insensitive to deterioration (i.e., a drop in complexity)
at the periphery. In summary, the combined results of the Sholl
and box-counting analyses suggest that ATN lesions induce a

FIGURE 6 | (A–D) examine the scaling behavior of an example neuron from ATN-ENR-PS group. (A) The example neuron’s basal arbor. (B) A magnification of the
region specified by the red square in (A). (C) A histogram showing the number of dendritic segments,NS, across the range of dendritic segment lengths, LS, for the arbor
in (A). (D) A scaling plot showing the results of the box-counting fractal analysis of the arbor in (A). (E–H) Equivalent panels to (A–D) for the arbor after uploading to
NeuroMorpho.Org.
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drop in complexity at the arbor’s periphery. According to our
model, this drop in complexity should translate to a reduction in
connectivity. Unfortunately, we cannot determine how the high
complexity of the neurons in the SH-ENR-TR group impacts the
optimization measure RCM because the limited number of
neurons prevents us from obtaining equivalent Figure 5 plots
for each individual group.

It is therefore informative to consider an automated procedure
that allows the technique to be applied to publicly accessible
repositories, for example online libraries such as NeuroMorpho.
Org (Ascoli et al., 2007) with a much larger number of neurons
and across a broad range of pathological conditions. We
investigated this potential by uploading our models to
NeuroMorpho.Org and compared the box-counting fractal
analysis presented here to when it is applied to the equivalent
uploaded models. Figure 6 provides a visual inspection of an
example neuron and its equivalent scaling plots. This inspection
reveals a deterioration in resolution, with the NeuroMorpho.Org
models appearing more jagged due to a straightening out of the
dendritic weave at the finest scales (Figures 6A,B,E,F). This is
highlighted in the histograms of dendritic segment lengths, LS,
which reveal a drop in the number of segments, NS, at the small
scales (Figures 6C,G). This jaggedness impacts the box-count at
all scales and results in a drop in DA (Figures 6D,H) relative to
the high-resolution value. As long as we accommodate for this
shift in DA value when using models uploaded to NeuroMorpho.
Org, then we can apply the technique presented here to a large
range of healthy and pathological neurons in the future.
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