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31.1  Introduction
The human nervous system is capable of simultaneous, integrated, and coordinated control of 100–150 
mechanical degrees of freedom of movement in the body via tensions generated by about 700 muscles. 
In its widest context, movement is carried out by a sensory-motor system (= sensorimotor system) 
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31-2 Human Performance Engineering

comprising multiple sensors (visual, auditory, proprioceptive), multiple actuators (muscles and skeletal 
system), and an intermediary processor which can be summarized as a multiple-input multiple-output 
nonlinear dynamic adaptive control system. This grand control system comprises a large number of 
interconnected processors and sub-controllers at various sites in the central nervous system (CNS) 
of which the more important are the cerebral cortex, thalamus, basal ganglia, cerebellum, and spinal 
cord. It is capable of responding with remarkable accuracy, speed (when necessary), appropriateness, 
versatility, and adaptability to a wide spectrum of continuous and discrete stimuli and conditions. 
It also possesses considerable capabilities for learning new skills, for long-term improvement of per-
formance with practice, and being able to switch quickly between quite different tasks. Certainly, by 
contrast, it is orders of magnitude more complex and sophisticated than the most advanced robotic 
systems currently available—although the latter can have superior and often highly desirable attributes 
such as precision and repeatability and a much greater immunity from factors such as fatigue, distrac-
tion, boredom, and lack of motivation!

This chapter has a primary focus on the sensory-motor control function. First, it introduces several 
important concepts relating to sensory-motor control, accuracy of movement, a performance resource, 
and a performance capacity. Second, it provides an overview of apparatuses and methods for the mea-
surement and analysis of complex sensory-motor performance of the upper-limbs (cf. lower-limbs and 
oculomotor system) by means of tracking tasks.

31.2  Basic Principles
31.2.1  Sensory-Motor Control and Accuracy of Movement

The sensory-motor control system is a central component of the sensory-motor system and, from the 
perspective of Kondraske’s elemental resource model of human performance (1995, 2006a), can be con-
sidered as a hierarchy of multiple interconnected sensory-motor controllers in the central processing 
and skills domains (cf. environmental interface domain, comprising sensors and actuators, and life-
sustaining domains) of the elemental resource model. These controllers range from low-level elemental 
level controllers for control of movement around single joints, through intermediate-level controllers 
needed to generate integrated movements of an entire limb and involving multiple joints and degrees of 
freedom, and high-level controllers and processors to enable coordinated synergistic multi-limb move-
ments and the carrying out of central executive functions concerned with allocation and switching of 
resources for execution of multiple tasks simultaneously.

Each of these controllers is considered to possess limited performance resources—or performance 
capacities—necessary to carry out their control functions. Performance resources are characterized by 
dimensions of performance, which for controllers are accuracy of movement (including steadiness and 
stability) and speed of movement. Accuracy is the most important of these and can be divided into four 
major classes:

 1. Spatial accuracy—Required by tasks which are self-paced and for which time taken is of second-
ary or minimal importance and includes tracing (e.g., map-tracking), walking, reaching, grasp-
ing, and, in fact, many activities of daily living. Limitation in speed performance resources should 
have no influence on this class of accuracy.

 2. Spatial accuracy with time constraints—Identical to “spatial accuracy” except that, in addition 
to accuracy, speed of execution of task is also of importance. Because maximal performance 
capacities for accuracy and speed of movement cannot, in general, be realized simultaneously, 
the carrying out of such tasks must necessarily involve speed-accuracy trade-offs (Fitts, 1954; 
Fitts and Posner, 1967; Murata and Iwase, 2001; Battaglia and Schrater, 2007; Jax et al., 2007; 
Bye and Neilson, 2008). The extent to which accuracy is sacrificed for increased speed of exe-
cution, or vice versa, is dependent on the actual or perceived relative importance of accuracy 
and speed.
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31-3Measurement and Analysis of Sensory-Motor Performance

 3. Temporal accuracy—Required by tasks which place minimal demands on positional accuracy 
and includes single and multi-finger tapping and foot tapping.

 4. Spatiotemporal accuracy—Required by tasks which place considerable demand on attainment of 
simultaneous spatial and temporal accuracy. This includes externally paced positional tasks such 
as tracking, driving a vehicle, flying a plane, ball games and sports, and video games. It should be 
stressed, however, that most self-paced tasks also involve a considerable interrelationship between 
space and time.

Tracking tasks are well established as able to provide one of the most accurate and flexible means for 
laboratory-based measurement of spatiotemporal accuracy and, thus, of the performance capacity of 
sensory-motor control or sensory-motor coordination. In addition, they provide an unsurpassed frame-
work for studies of the underlying control mechanisms of motor function (Lynn et al., 1979; Cooper 
et al., 1989; Neilson et al., 1993, 1998; Davidson et al., 2000, 2002; Neilson and Neilson, 2002)—the 
potential for which was recognized as early as 1943 as seen in writings by Craik (1966). They have 
achieved this status through their (a) ability to maximally stress the accuracy dimension of performance 
and, hence, the corresponding control performance resource, (b) continuous nature and wide range of 
type and characteristics of input target signals they permit, (c) facility for a wide range of 1-D, 2-D, and 
2-D sensors for measuring a subject’s motor output, and (d) measure of continuous performance (cf. 
discrete tasks such as reaction time tests).

From this perspective, it will be of little surprise to find that tracking tasks are the primary thrust of 
this chapter.

31.2.2  Influence of Lower-Level Performance Resources on Higher-Level 
Control Performance Resources

By their very nature, tasks which enable one to measure spatiotemporal accuracy are complex or higher-
level sensory-motor tasks. These place demands on a large number of lower-level performance resources 
such as visual acuity, visual perception, range of movement, strength, simple reaction times, accelera-
tion/deceleration, static steadiness, dynamic steadiness, prediction, memory, open-loop movements, 
concentration span, central executive function (attention switching, divided attention, multitasking), 
utilization of preview, and learning.

It is, therefore, important to ask: If there are so many performance resources involved in tracking, 
can tracking performance provide an accurate estimate of sensory-motor control performance capaci-
ties? Or, if differences are seen in tracking performance between subjects, do these necessarily indicate 
comparable differences in control performance capacities? Yes, they can, but only if the control resource 
is the only resource being maximally stressed during the tracking task. Confirmation that the other 
performance resources are not also being maximally stressed for a particular subject can be ascertained 
by two means. First, by independently measuring the capacity of the other performance resources and 
confirming that these are considerably greater than that determined as necessary for the tracking task in 
question. For example, if the speed range for a certain reference group on a nontarget speed test is 650–
1250 mm/s and the highest speed of a tracking target signal is 240 mm/s, then one can be reasonably 
confident that intra-group differences in performance on the tracking task are unrelated to intra-group 
differences in speed. Second, where this process is less straightforward or not possible, it may be possible 
to alter the demands imposed by the task on the performance resource in question. For example, one 
could see whether visual acuity was being maximally stressed in a tracking task (and, hence, be a signifi-
cant limiting factor to the performance obtained) by increasing or decreasing the eye-screen distance. 
Similarly, one could look at strength in this context by altering the friction, damping, or inertia of the 
sensor, or at range of movement by altering the gain of the sensor.

The conclusion that a task and a performance resource are unrelated for a particular group does not, 
of course, mean that this can necessarily be extrapolated to some other group. For example, strength 
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31-4 Human Performance Engineering

may be uncorrelated with tracking performance in healthy males yet be a factor responsible for poorer 
tracking performance in females (Jones et al., 1986) and the primary factor in the paretic arm of subjects 
who have suffered a stroke (Jones et al., 1989).

The foregoing discussion is based on the concept of an assumption that if a task requires less than 
the absolute maximum available of a particular performance resource, then performance on that task 
will be independent of that performance resource. Not surprisingly, the reality is unlikely to be this 
simplistic or clear-cut! If, for example, a tracking task places moderate sub-maximal demands on sev-
eral performance resources, these performance resources will be stressed to varying levels such that 
the subject may tend to optimize the utilization of those resources (Kondraske, 1995, 2006a) so as to 
achieve an acceptable balance between accuracy, speed, stress/effort, and fatigue (physical and cog-
nitive). Thus, although strength available maybe much greater than strength needed (i.e., Resource 
available >>  Resource demand) for both male and female individuals, the differential in strength 
could well be responsible for male individuals performing better on tracking tasks than female indi-
viduals due to the higher acceleration performance resource in male individuals and, hence, ability to 
correct tracking errors faster (Jones et al., 1986).

31.3  Measurement of Sensory-Motor Performance
31.3.1  Techniques: An Overview

Tracking tasks are the primary methodological approach outlined in this chapter for measurement of 
sensory-motor control performance. There are, however, a large number of other approaches, each with 
their own set of apparatuses and methods, which can provide similar or different data on aspects of 
sensory-motor control performance. It is possible to give only a cursory mention of these other tech-
niques in this chapter.

Hand and foot test boards comprising multiple touch-plate sensors provide measures of accuracy and 
speed of lateral reaching-tapping abilities (Kondraske et al., 1984, 1988).

Measurement of steadiness and tremor in an upper-limb, lower-limb, or segment of either, par-
ticularly when subtended, can be made using variable-size holes, accelerometers, or force transducers 
(Potvin et al., 1975). A dual-axis capacitive transducer developed by Kondraske et al. (1984) provides 
an improved means of quantifying steadiness and tremor due to it requiring no mechanical connec-
tion to the subject (i.e., no added inertia) and by providing an output of limb position as opposed to 
less informative measures of acceleration or force. Interestingly, tests of steadiness can be appropriately 
considered as a category of tracking tasks in which the target is static. The same is also true for measure-
ment of postural stability using force balance platforms, whether for standing (Kondraske et al., 1984; 
Myklebust et al., 2009) or sitting (Riedel et al., 1992; Schilling et al., 2009).

While the primary focus in this chapter is on measuring tracking performance in the upper limbs, 
many of the tasks can equally be applied to measurement of oculomotor function, including random 
targets for assessing smooth pursuit function and predictable and unpredictable step targets for assess-
ing saccadic function (MacAskill et al., 2002; Muir et al., 2003; Heitger et al., 2004, 2008, 2009).

31.3.2  Tracking Tasks: An Overview

A tracking task is a laboratory-based test apparatus characterized by a continuous input signal—the tar-
get—which a subject must attempt to match as closely as possible by his/her output response by controlling 
the position of (or force applied to) some sensor. It provides unequalled opportunities for wide-ranging 
experimental control over sensors, displays, target signals, dimensionality (degrees of freedom), control 
modes, controlled system dynamics, and sensor-display compatibility, as well as the application of a vast 
armamentarium of linear and nonlinear techniques for response signal analysis and systems identifica-
tion. Because of this, the tracking task has proven to be the most powerful and versatile tool for assessing, 
studying, and modeling higher-level functioning of the human “black-box” sensory-motor system.
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31-5Measurement and Analysis of Sensory-Motor Performance

There are three basic categories of tracking tasks, differing primarily in their visual display and 
corresponding control system (Figure 31.1). The pursuit task displays both the present input and out-
put signals, whereas the compensatory task displays only the difference or error signal between these. 
The preview task (Poulton, 1964; Welford, 1968; Jones and Donaldson, 1986; Jones et al., 1996; Klaver 
et  al., 2004) (Figure 31.2) is similar to the pursuit task except that the subject can see in advance 
where the input signal is going to be and plan accordingly to minimize the resultant error signal. 
Tracing tasks (Driscoll, 1975; Stern et al., 1983; Hocherman and Aharon-Peretz, 1994; Gowen and 
Miall, 2006) are effectively self-paced 2-D preview tracking tasks.The input–output nature of track-
ing tasks has made them most suitable for analysis using engineering control theories. This has led to 

FIGURE 31.2 Visual display for random tracking with a preview of 8.0 s and postview of 1.1 s.
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FIGURE 31.1 Modes of tracking. (i) Compensatory: subject aims to keep his error signal X (= input signal – out-
put signal = si(t) – so(t)) on the stationary vertical line; (ii) pursuit: subject aims to keep his output signal X, so(t), on 
the target input signal O, si(t); (iii) preview: subject aims to keep his output signal X, so(t), on the descending target 
input signal [si(t + Tp) to si(t – Th)], where t = present time, Tp = preview time, Th = history or postview time.
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31-6 Human Performance Engineering

the common view of pursuit tracking as a task involving continuous negative feedback (Notterman 
et al., 1982) but there is evidence that tracking viewed as a series of discrete events is more appropri-
ate (Bösser, 1984; Neilson et al., 1988a; Bye and Neilson, 2010). The inclusion of preview of the input 
signal greatly complicates characterization of the human controller and Sheridan (1966) suggested 
three models of preview control which employ the notions of constrained preview and nonuniform 
importance of input. Lynn et al. (1979) and Neilson et al. (1992) have also demonstrated how, by treat-
ing the neurologically impaired subject as a black-box, control analysis can lead to further informa-
tion on underlying neurological control mechanisms. Davidson et al. (2000, 2002) and Ghous and 
Neilson (2002) have done likewise in their investigations of open-loop control mechanisms in healthy 
subjects.

Despite the widespread utilization and acceptance of tracking tasks as a powerful and versatile 
means for quantifying and studying sensory-motor control performance and capacities, there is little 
available on the market in this area. The most obvious exception to this is the photoelectric pursuit 
rotor which is ubiquitous in the motor behavior laboratories of university psychology departments 
and has been available since the 1950s (Welford, 1968; Schmidt, 1982; Siegel, 1985). It is a paced 2-D 
task with a target with the periodic on each revolution. Although inexpensive, the pursuit rotor is a 
crude tracking task allowing limited control over target signals and possessing a very gross perfor-
mance analysis in terms of time on target. Thus, essentially all of the many and varied tracking tasks 
which have been used in countless experimental studies around the world, with some of these tasks 
having moved into clinical neurology and rehabilitation environments as objective and quantitative 
assessment tools, have been developed by the users themselves for their specific objectives. That is, 
surprisingly, there are essentially no computer-based tracking test systems commercially available. 
The need for such, including sensors for both upper- and lower limbs, seems obvious as this would 
open up the possibility of a much broader and widespread use of tracking tasks. In particular, this 
would help facilitate much greater utilization of tracking tasks outside of traditional research areas 
and in more routine assessment applications in clinical, rehabilitative, vocational, sports, and other 
environments.

Whatever the reason(s) for needing a tracking task to quantify sensory-motor control performance or 
capacity, there are a number of options available and factors to be considered in choosing or designing 
a tracking task. These are discussed in Sections 31.3.3 through 31.3.14.

31.3.3  Sensors

Sensors for measuring a subject’s motor output in 1-D tracking tasks can be categorized under (a) move-
ments involving a single degree of freedom such as flexion–extension rotation around a single joint such 
as elbow (Lynn et al., 1977; Deuschl et al., 1996; O’Dwyer et al., 1996; Soliveri et al., 1997), wrist (Warabi 
et al., 1986; Gibson et al., 1987; Johnson et al., 1996; Liu et al., 1999; Feys et al., 2005; Notley et al., 2007), 
or a finger, or pronation–supination of the wrist (Evarts et al., 1981), and (b) movements involving two or 
more degrees of freedom of a body part (e.g., hand)—that is, coordinated movement at multiple joints—
which are either 1-D, such as some form of linear transducer (Patrick and Mutlusoy, 1982; Baroni et al., 
1984; van den Berg et al., 1987; Johnson et al., 1996) or 2-D, such as steering wheel (Buck, 1982; Ferslew 
et al., 1982; Jones and Donaldson, 1986; Jones et al., 1993, 2002; Davidson et al., 2000, 2002; Heitger 
et al., 2004, 2007; Peiris et al., 2006, 2011; Innes et al., 2007, 2009a; Hoggarth et al., 2010), stirring wheel 
(De Souza et al., 1980), position stick (i.e., 1-D joystick) (Potvin et al., 1977; Neilson and Neilson, 1980; 
Miall et al., 1985; O’Dwyer and Neilson, 1998; Watson and Jones, 1998), joystick (Kondraske et al., 1984; 
Anderson, 1986; Behbehani et al., 1988; Dalrymple-Alford et al., 1994; Watson et al., 1997; Watson and 
Jones, 1998; Gonzalez et al., 2000; Allen et al., 2007; Poudel et al., 2008, 2010b; Siengsukon and Boyd, 
2009a), finger-controlled rotating knob (Neilson et al., 1993), light-pen (Neilson and Neilson, 1980), and 
MRI-compatible pneumatic squeeze bulb/ball (Oishi et al., 2011) (e.g., Current Designs—www.curdes.
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31-7Measurement and Analysis of Sensory-Motor Performance

com). Force sticks, utilizing strain-gauge transducers mounted on a cantilever, are also commonly used 
as sensors (Garvey, 1960; Potvin et al., 1977; Miller and Freund, 1980; Kondraske et al., 1984; Anderson, 
1986; van den Berg et al., 1987; Barr et al., 1988; Stelmach and Worrington, 1988; Chelette et al., 1995; 
Van Orden et al., 2000; Allen et al., 2007; Jasper et al., 2010). Isometric integrated EMG (i.e., full-wave 
rectification and low-pass filtering of the raw EMG) can also be used to control the tracking response 
cursor, as was done by Neilson et al. (1990) to help show that impairment of sensory-motor learning is 
the primary cause of functional disability in cerebral palsy.

Sensors for 2-D tasks must, of course, be capable of moving with and recording two degrees of free-
dom. Joysticks are commonly used for this and range in size from small, for wrist/finger movement 
(Bloxham et al., 1984; Anderson, 1986; Frith et al., 1986; Neilson et al., 1998; Gonzalez et al., 2000; 
Allen et al., 2007), including MRI-compatible joysticks (Poudel, 2008, 2010b) (e.g., Current Designs—
www.curdes.com), up to large floor-mounted joysticks for arm movements primarily involving shoulder 
and elbow function (Kondraske et al., 1984; Anderson, 1986; Behbehani et al., 1988; Jones et al., 1993; 
Dalrymple-Alford et al., 1994; Watson et al., 1997; Watson and Jones, 1998). Other 2-D task sensors 
include computer mouse (Korteling and Kaptein, 1996), computer track-ball (Petrilli et al., 2005), hand-
held stylus for the photoelectric pursuit rotor (Schmidt, 1982; Siegel, 1985), plexiglass tracing (Driscoll, 
1975; Stern et al., 1983; Hocherman and Aharon-Peretz, 1994; Gowen and Miall, 2006), touch-sensi-
tive screen (Engel and Soechting, 2000), and tasks utilizing sonic digitizers (Stern, 1986; Viviani and 
Mounoud, 1990; Hocherman and Aharon-Peretz, 1994). Abend et al. (1982) and Flash and Hogan (1985) 
used a two-joint mechanical arm to restrict hand movements to the horizontal plane in the investigation 
of CNS control of two-joint (shoulder and elbow) movements in trajectory formation. Stern et al. (1983) 
simply used the subject’s finger as the sensor for a tracing task on a vertical plexiglass screen; a video 
camera behind the screen recorded finger movements. Novel whole-body 2-D tracking is also possible 
by having subjects alter their posture while standing on a dual-axis force platform (Kondraske et al., 
1984).

1-D sensors can also be used in 2-D tasks by way of bimanual tracking. For example, O’Dwyer and 
Neilson (1995) and Neilson and Neilson (2002) used two 1-D joysticks to investigate dynamic synergies 
between the right and left arms.

More recently, high spatial precision 3-D sensors have become available via infrared LED markers 
combined and camera system (e.g., Optotrak—www.ndigital.com/lifesciences/certus-motioncapture-
system.php) or electromagnetic trackers (e.g., Polhemus—polhemus.com; Flock-of-Birds, trakSTAR—
www.ascension-tech.com) and play an important role in 3-D virtual-environment systems (Mrotek 
et al., 2006; Myall et al., 2008).

31.3.4  Displays

In the early days of tracking, mechanical-based displays were used, such as a rotating smoked drum 
(Vince, 1948), the ubiquitous pursuit rotor, and a paper-strip preview task (Poulton, 1964; Welford, 
1968). An oscilloscope was used in a large number of tracking tasks, initially driven by analog cir-
cuitry (Flowers, 1976; Anderson, 1986; Sheridan et al., 1987) but later by D/A outputs on digital com-
puters (Kondraske et al., 1984; Miall et al., 1985; Sheridan et al., 1987; Cooper et al., 1989). Standard 
raster-based television screens have been used by some workers (Potvin et al., 1977; Beppu et al., 1984). 
Nonraster vector graphics displays, such as Digital Equipment’s VT11 dynamic graphics unit, proved 
valuable during the PDP-era as a means for generating more complex dynamic stimuli such as squares 
(Neilson and Neilson, 1980; Frith et al., 1986) and preview (Jones and Donaldson, 1986) (Figure 31.2). 
More recently, raster-based color graphics boards have allowed impressive static displays and simple 
dynamic tracking displays to be generated on PCs. However, such boards are not, in general, immedi-
ately amenable for the generation of flawless dynamic displays involving more complex stimuli, such as 
required for preview tracking. Jones et al. (1993) overcame this drawback by the use of specially written 
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31-8 Human Performance Engineering

high-speed assembly-language routines for driving their display. These generated a display of the target 
and the subject’s response marker by considering the video memory (configured in EGA mode) as four 
overlapping planes, each switchable (via a mask), and each capable of displaying the background color 
and a single color from a palette. Two planes were used to display the target, with the remaining two 
being used to display the subject’s pointer. The current target was displayed on one target plane, while 
the next view of the target, in its new position, was being drawn on the other nondisplayed target plane. 
The role of the two planes was reversed when the computer received a vertical synchronization inter-
rupt from the graphics controller indicating the completion of a raster. Through a combination of a 
high update-rate of 60.34 Hz (i.e., the vertical interrupt frequency), assembly language, and dual display 
buffers, it was possible to obtain an extremely smooth dynamic color display. Their system for tracking 
and other quantitative sensory-motor assessments was further enhanced through its facility to generate 
dynamic color graphics on two high-resolution monitors simultaneously: one for the tracking display, 
and one for use by the assessor for task control and analysis. The monitors were driven by a ZX1000 
graphic controller (Artist Graphics Inc.), at 800 × 600, and a standard VGA controller, respectively.

In contrast to the above CRT-based displays, Warabi et al. (1986) used a laser-beam spot to indicate a 
subject’s hand position together with a row of LEDs for displaying a step target. Similarly, Gibson et al. 
(1987) used a galvanometer-controlled laser spot to display smooth and step stimuli on a curved screen 
together with a white-light spot controlled by subject. Leist et al. (1987), Viviani and Mounoud (1990), 
and Klockgether (1994) also used galvanometer-controlled spots but via back-projection onto a curved 
screen, transparent digitizing table, and plexiglass surface, respectively. Van den Berg et al. (1987) used 
two rows of 240 LEDs each to display target and response. 2-D arrays of LEDs have also been used to 
indicate step targets in 2-D tracking tasks (Abend et al., 1982; Flash and Hogan, 1985).

However, graphics and display technologies have moved on substantially from the above heady days. 
Flat-screen LED displays have mostly replaced CRT-based displays, and high-resolution dual-screen color 
graphics built into motherboards are near standard in desktop and laptop computers. Similarly, the avail-
ability of powerful (and often open-source) graphics development software packages and libraries has 
greatly simplified the task of generating real-time dynamic graphics needed for tracking task displays.

Full-immersion 3-D virtual environments, via red/green glasses and green (left eye) and red (right 
eye) images rear-projected onto a large vertical screen (Mrotek et al., 2006) or a half-silvered mirror and 
stereoscopic glasses approach (Myall, 2008), have more recently opened up opportunities and applica-
tions for 3-D tracking.

While strictly not tracking tasks, driving simulators are often used instead of tracking tasks to provide 
a more realistic real-world environment, especially when one of the aims is, not surprisingly, to simu-
late the on-road task and environment (Banks et al., 2004; Lin et al., 2005; Desai and Haque, 2006; Lee, 
2006; Schultheis et al., 2006, 2007; Cadeddu and Kondraske, 2007; Golz et al., 2007; Anund et al., 2008; 
Boyle et al., 2008; Lowden et al., 2009; Sommer et al., 2009; Boyle and Lee, 2010; Golz and Sommer, 2010; 
Jung et al., 2010; Sommer and Golz, 2010; Vadeby et al., 2010; Martens et al., 2011; Mayhew et al., 2011; 
Calhoun and Pearlson, 2012). Other than their more complex simulated real-road displays, the presence 
of distractors, and sometimes the presence of multiple tasks, a major distinguishing feature of driving 
simulators from tracking tasks is their substantial dead-zone within which the subject is not penalized 
as long as they keep within the lane markings or sides of the road. In many situations (e.g., driving) 
this is reasonably valid but, conversely, driving simulation is more difficult to score, with, for example, 
smaller deviations being ignored and the confounding presence of self-pacing. Notwithstanding, driv-
ing simulators are a valuable tool in driving research and driving assessment.

31.3.5  Target Signals

Tracking targets cover a spectrum from smoothly changing (low-bandwidth) targets, such as sinusoidal 
and random, through constant velocity ramp targets, to abrupt changing step targets.
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31-9Measurement and Analysis of Sensory-Motor Performance

31.3.5.1  Sinusoidal Targets

The periodicity, constancy of task complexity (over cycles), and spectral purity of sine targets make them 
valuable for measurement of within-run changes in performance (e.g., learning, lapses in concentration) 
(Jones and Donaldson, 1981), the study of ability to make use of the periodicity to improve tracking 
performance (Jones and Donaldson, 1989), and the study of the human frequency response (Leist et al., 
1987). Several other workers have also used sine targets in their tracking tasks (Potvin et al., 1977; Miller 
and Freund, 1980; Ferslew et al., 1982; Notterman et al., 1982; Johnson et al., 1996; Soliveri et al., 1997; 
Heitger et al., 2004; Innes et al., 2007, 2009a; Siengsukon and Boyd, 2009a; Hoggarth et al., 2010).

Bloxham et al. (1984) and Frith et al. (1986) extended the use of sinewaves into a 2-D domain by 
 having subjects track a moving circle on the screen.

31.3.5.2  Random Targets

These are commonly generated via a sum-of-sines approach in which a number of harmonically or 
nonharmonically related sinusoids of random phase are superimposed (Cassell et  al., 1973; Neilson 
and Neilson, 1980; Miall et al., 1985; Baddeley et al., 1986; Frith et al., 1986; van den Berg et al., 1987; 
Barr et al., 1988; Cooper et al., 1989; Jones et al., 1993, 1996, 2002; Dalrymple-Alford et al., 1994, 2003; 
Hufschmidt and Lücking, 1995; Makeig and Jolley, 1996; Backs, 1997; Watson et al., 1997; Watson and 
Jones, 1998; Davidson et al., 2000, 2002; Heitger et al., 2004, 2007; Oytam et al., 2005; Peiris et al., 2006, 
2011; Innes et al., 2007, 2009b; Huang et al., 2008; Poudel et al., 2009, 2010a,b; Hoggarth et al., 2010). 
If harmonically related, this can effectively give a flat spectrum target out to whatever bandwidth is 
required. Thus, in Jones et al.’s systems (Jones et al., 1993; Watson et al., 1997; Davidson et al., 2000; Peiris 
et al., 2006; Poudel et al., 2008; Innes et al., 2009b) the random signal generation program asks the user 
for the required signal bandwidth and then calculates the number of equal amplitude harmonics that 
must be summed together to give this bandwidth, each harmonic being assigned a randomly selected 
phase from a uniform phase distribution. Each target comprises 4096 (212) or more samples, a duration 
of at least 68 s (4096 samples/60.34 Hz), and a fundamental frequency of 0.0147 Hz (i.e., period of 68 s). 
By this means it is possible to have several different pseudo-random target signals that are nonperiodic 
up to 68-s duration, have flat spectra within a user-specified bandwidth, no components above this band-
width, and whose spectra can be accurately computed by FFT from any 68-s block of target (or response). 
Another common approach to the generation of random targets is to digitally filter a sequence of pseudo-
random numbers (Lynn et al., 1977; Potvin et al., 1977; Kondraske et al., 1984; van den Berg et al., 1987; 
Neilson et al., 1993; Neilson and Neilson, 2002), although this method gives less control over the spectral 
characteristics of the target. Bösser (1984) summed a number of these filtered sequences in such a way as 
to generate a target having an approximate 1/f spectrum. Another smooth pursuit target was generated by 
linking together short segments of sinewaves with randomly selected frequencies up to some maximum 
(Gibson et al., 1987) and was thus effectively a hybrid sinusoidal-random target.

In studies of lapses of responsiveness (e.g., microsleeps, lapses of sustained attention, lapses of focused 
attention), a 1-D target and most 2-D targets have “flat-spots” during which it is not possible to say defin-
itively that a flat-spot in the response was due to a lapse (Peiris et al., 2006; Davidson et al., 2007; Huang 
et al., 2008). Poudel et al. (2008, 2009, 2010a,b) overcame this deficiency by designing a 2-D tracking task 
in which the speed of the target never goes below 20 mm/s (Figure 31.3); hence, a flat-spot in the tracking 
response can only be attributed to a true lapse of responsiveness.

31.3.5.3  Ramp Targets

Ramp targets have been used in conjunction with sensory gaps of target or response to study predictive 
tracking and ability to execute smooth constant velocity movements in the absence of immediate visual 
cues in normal subjects (Flowers, 1978b) and subjects with cerebellar disorders (Beppu et al., 1987), 
stroke (Jones et al., 1989), and Parkinson’s disease (Cooke et al., 1978; Flowers, 1978a; Liu et al., 1999).
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31-10 Human Performance Engineering

31.3.5.4  Step Targets

Step targets have been used in many applications and studies to measure and investigate abilities to 
predict, program, and execute ballistic (open-loop) movements. To enable this, spatial and temporal 
unpredictability have been incorporated into step tasks in various ways:

• Temporal predictability: The time of onset of steps has ranged from (a) explicitly predictable, with 
preview of the stimulus (Day et al., 1984; Jones et al., 1993), (b) implicitly predictable, with fixed 
interval between steps (Potvin et al., 1977; Cooke et al., 1978; Flowers, 1978b; Abend et al., 1982; 
Deuschl et al., 1996; Johnson et al., 1996; Sailer et al., 2002; Feys et al., 2005), to (c) unpredictable, 
with intervals between steps varied randomly over spans lying somewhere between 1.5 and 7.0 s 
(Angel et al., 1970; Flowers, 1978b; Kondraske et al., 1984; Anderson, 1986; Jones and Donaldson, 
1986; Warabi et al., 1986; Gibson et al., 1987; Sheridan et al., 1987; Jones et al., 1993, 2002; Neilson 
et al., 1995; Watson et al., 1997; O’Dwyer and Neilson, 1998; Heitger et al., 2004; Allen et al., 2007; 
Innes et al., 2007, 2009a).

• Amplitude predictability: The amplitude of steps has ranged from (a) explicitly predictable, where 
the endpoint of the step is shown explicitly prior to the “Go” stimulus (Abend et al., 1982; Baroni 
et al., 1984; Sheridan et al., 1987; Jones et al., 1993; Deuschl et al., 1996; Watson et al., 1997; Feys 
et al., 2005), (b) implicitly predictable, where all steps have the same amplitude (Angel et al., 1970; 
Potvin et al., 1977; Cooke et al., 1978; Day et al., 1984; Kondraske et al., 1984; Anderson, 1986; 
Johnson et al., 1996; O’Dwyer and Neilson, 1998) or return-to-center steps in variable-amplitude 
step tasks (Flowers, 1976; Jones and Donaldson, 1986; Jones et al., 1993), to (c) unpredictable, with 
between 2 and 8 randomly distributed amplitudes (Flowers, 1976; Jones and Donaldson, 1986; 
Warabi et al., 1986; Gibson et al., 1987; Sheridan et al., 1987; Jones et al., 1993, 2002; Sailer et al., 
2002; Heitger et al., 2004; Allen et al., 2007; Innes et al., 2007, 2009a).

• Direction predictability: Step tasks have had steps whose direction ranged from (a) all steps 
explicitly predictable, alternating between right and left (Flowers, 1976; Potvin et  al., 1977; 
Cooke et  al., 1978; Baroni et  al., 1984; Kondraske et  al., 1984; Johnson et  al., 1996; O’Dwyer 
and Neilson, 1998; Sailer et al., 2002; Feys et al., 2005; Allen et al., 2007), or all in one direction 
(i.e., a series of discontinuous steps) (Sheridan et al., 1987), or between corners of an invisible 
square (Anderson, 1986), or having preview (Abend et  al., 1982; Jones et  al., 1993), (b) most 
steps predictable but with occasional “surprises” for studying anticipation (Flowers, 1978a), (c) 
a combination of unpredictable (outward) and predictable (back-to-center) steps (Angel et al., 
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FIGURE 31.3 2-D random tracking task in which the speed of the target never goes below 20 mm/s, i.e., no 
flat-spots.
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31-11Measurement and Analysis of Sensory-Motor Performance

1970; Jones and Donaldson, 1986; Jones et al., 1993; Watson et al., 1997), and (d) all steps unpre-
dictable, with multiple endpoints (Warabi et al., 1986; Gibson et al., 1987) or resetting between 
single steps (Day et al., 1984).

The three elements of unpredictability can be combined in various ways to generate tasks ranging 
from completely predictable to completely unpredictable (Table 31.1). Several groups have implemented 
several variations of unpredictability both within and between step tracking tasks to investigate the 
possible loss of ability to use predictability to improve performance in, for example, Parkinson’s disease 
(Flowers, 1978a; Sheridan et al., 1987; Watson et al., 1997). In addition to unpredictability, other charac-
teristics can be built into step tasks including explicit target zones (Sheridan et al., 1987) and visual gaps 
in target (Flowers, 1976; Warabi et al., 1986).

An example of a 1-D step tracking task possessing full spatial and temporal unpredictability is that 
of Jones and colleagues (Jones and Donaldson, 1986; Jones et al., 1993; Heitger et al., 2004; Innes et al., 
2007, 2009a) (Figure 31.4a). The task comprises 32 abrupt steps alternating between displacement from 
and return to center screen. In the nonpreview form, spatial unpredictability is present in the outward 
steps through four randomly distributed amplitude/direction movements (large and small steps requir-
ing 90.0 and 22.5 deg on a steering wheel, respectively, and both to right and left of center) with temporal 
unpredictability achieved via four randomly distributed durations between steps (2.8, 3.4, 4.0, 4.6 s). This 

TABLE 31.1 Unpredictability in Step Tracking Tasks

Temporal Spatial-Amplitude Spatial-Direction Overall

Full Partial None Full Partial None Full Partial None Full
Angel et al. (1970)a 1-D • • • •
Flowers (1976)a 1-D • • • •
Potvin et al. (1977) 1-D • • •
Cooke et al. (1978) 1-D • • •
Flowers (1978a) 1-D • • •
Baroni et al. (1984) 1-D • • •
Day et al. (1984) 1-D • • •
Kondraske et al. 

(1984)
1-D • • •

Warabi et al. (1986) 1-D • • • •
Jones and Donaldson 

(1986)a
1-D • • • • • •

Gibson et al. (1987) 1-D • • • •
Sheridan et al. (1987)a 1-D • • • •
Jones et al. (1993)a 1-D • • • • • • • •
Deuschl et al. (1996) 1-D • • •
Johnson et al. (1996) 1-D • • •
O’Dwyer and 

Neilson (1998)
1-D • • •

Sailor et al. (2002) 1-D • • •
Feys et al. (2005) 1-D • • •
Allen et al. (2007)a 1-D • • • • •
Abend et al. (1982) 2-D • • •
Anderson (1986) 2-D • • •
Watson et al. (1997) 2-D • • •
Ariff et al. (2002) 2-D • • •

a Several variations of unpredictability within one task or between multiple tasks.
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31-12 Human Performance Engineering

task has been used, together with preview random tracking, to demonstrate deficits in sensory-motor 
control in the asymptomatic “good” arm of subjects who have had a unilateral stroke (Jones et al., 1989).

Watson et al. (1997) provided an example of a 2-D step tracking task with spatial and temporal unpre-
dictability. In this task the subject must move a cross from within a central starting square to within one 
of eight 10-mm × 10-mm target squares that appear on the screen with temporal and spatial unpredict-
ability (Figure 31.4b). The centers of the eight surrounding targets are positioned at the vertices and mid-
way along the perimeter of an imaginary 100-mm × 100-mm square centered on the central square. To 
initiate the task, the subject places the cross within the perimeter of the central target. After a 2.0–5.0-s 
delay, one of the surrounding blue targets turns green and the subject moves the cross to within the 
green target square as quickly and as accurately as possible. After a further delay, the central target turns 
green indicating onset of the spatially predictive “back-to-center” target. The task, which comprises 
ten outward and ten return targets, was used to show that Parkinsonian subjects perform worse than 
matched controls on all measures of step tracking but are not impaired in their ability to benefit from 
spatial predictability to improve performance.

Step tasks with explicit target zones, in 1-D (Sheridan et al., 1987) or 2-D (Watson et al., 1997), pro-
vide the possibility of altering task difficulty by varying the size of the target. On the basis that subjects 
need only aim to get their marker somewhere within target zone (cf. close to center) then, according to 
Fitts’s (1954) ratio rule, the difficulty of the primary movement is proportional to log2(2A/W), where A 
is the amplitude of the movement and W is the width of the target.

31.3.5.5  Switching Targets

Jones et  al. (1986, 1989, 1993) combined two quite different modes of tracking within a single task. 
Combination tracking involves alternating between preview random and nonpreview step tracking over 
11-s cycles (Figure 31.5). Thus, while tracking the random target, the preview signal is abruptly and 
unpredictably replaced by a stationary vertical line at some distance from the random signal, and vice 
versa. Although the steps occur with a fixed fore-period (as with the step tasks listed above with implicit 
temporal predictability) of 7.3 s, subjects are not informed of this and, irrespective, Weber’s law (Fitts 
and Posner, 1967) indicates the accuracy of prediction of steps with such a long pre-stimulus warning is 
very low. Combination tracking allows the study of ability to change motor set (Robertson and Flowers, 
1990) between quite different modes of tracking and is analogous to having to quickly and appropriately 
respond to an unexpected obstacle, such as a child running onto the road, while driving a vehicle.

31.3.6  Dimensionality

The number of dimensions of a tracking task usually refers to the number of Cartesian coordinates in 
which the target moves, rather than those of the response marker or sensor handle, or the number of 
degrees of freedom of the target or of the upper limb. For example, (1) even with a 2-D joystick sensor 

+

(b)(a)

FIGURE 31.4 Visual displays for (a) 1-D step tracking task and (b) 2-D step tracking task (bottom-right square 
is current target).
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31-13Measurement and Analysis of Sensory-Motor Performance

or light-pen, if the target moves in the vertical direction only (Neilson and Neilson, 1980; Kondraske 
et al., 1984; Miall et al., 1985; Jones et al., 1993), the task is only considered 1-D, irrespective of whether 
the response marker is confined to vertical movements on the screen or not; (2) if the target trajectory is 
a circle (Bloxham et al., 1984), the task is 2-D despite the target having only one degree of freedom (i.e., 
radius r is constant); and (3) a pursuit rotor is a 2-D task as it has a target which moves in two dimensions 
(whether Cartesian or polar) as well as doing so with two degrees of freedom (Welford, 1968).

Watson and Jones (1998) compared random 2-D with 1-D performance but in doing so scaled their 
2-D target down so as to have an average displacement and velocity equal to that of its 1-D horizontal 
and vertical components. By this means they were able to unequivocally demonstrate that there is poorer 
performance on 2-D tasks and that this is due to both the increased dimensionality and increased posi-
tion/speed demands of an unscaled 2-D task. Conversely, Oytam et al. (2005) showed that a 2-D track-
ing task has a response delay no longer than a 1-D task in healthy subjects.

Dual-axis tracking is a variant of 2-D tracking in which the 2-D task comprises two simultaneous 
orthogonal 1-D tasks in which one or more of the target, input device, control dynamics, and on-line 
feedback are different between the two axes. It has been used to investigate mechanisms and charac-
teristics of 2-D tracking, and it has been shown that a 2-D task is indeed a single task rather than two 
separate orthogonal tasks (Navon et al., 1984; Fracker and Wickens, 1989).

More recently, virtual visuoperceptual environments combined with LED or electromagnetic 3-D 
trackers have provided a means for moving tracking tasks into the realm of 3-D (Mrotek et al., 2006; 
Myall et al., 2008).

31.3.7  Tracking Mode

The two primary modes of tracking—compensatory and pursuit—were introduced in Section 31.3.2 
and Figure 31.1. Most tasks are of the pursuit type, which reflects its greater parallel with real-world 
sensory-motor tasks, but the compensatory task, in which the subject sees only the instantaneous value 
of the error signal, has proven valuable in several studies (Vince, 1948; Garvey, 1960; Potvin et al., 1977; 
Miller and Freund, 1980; Bösser, 1984; Barr et al., 1988; Makeig and Jolley, 1996; Backs, 1997; Huang 
et al., 2008; Gazes et al., 2010). The compensatory mode can be preferentially chosen for control-theory 
modeling due to its simpler set of defining equations (Potvin et al., 1977). Makeig and Jolly (1996) devel-
oped a novel variation to the standard compensatory tracking task by superimposing on the random 
target a second “force” equivalent to the force of gravity so as to cause the response disc to slip on an 
unseen slippery surface.

3 sectors1 partition

R-sector
= Random
(preview)

S-sector
= step

(non-preview)

SR-sector
= step/

Random

FIGURE 31.5 Section of input waveform in combination tracking in which the target alternates between preview-
random and non-preview-step.
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31-14 Human Performance Engineering

The preview task (Poulton, 1964; Welford, 1968; Potvin et al., 1977; Jones and Donaldson, 1986, 1989; 
Gianutsos, 1994; Jones et al., 1996, 2002; Kisacanin et al., 2000; Dalrymple-Alford et al., 2003; Heitger 
et al., 2004; Peiris et al., 2006; Innes et al., 2007, 2009a; Hoggarth et al., 2010) is an important variation 
of pursuit tracking in which a still greater correspondence with everyday tasks is achieved.

31.3.8  Controlled System Dynamics

It is well established that subjects can deal satisfactorily with a variety of tracking systems incorporating 
different control characteristics (Poulton, 1974; Neilson et al., 1995). Notwithstanding, the majority of 
tracking tasks have a zero-order controlled system in which the position of the response marker is pro-
portional to the position of the sensor and the mechanical characteristics of friction, inertial mass, and 
velocity damping are simply those of the input device. Van den Berg et al. (1987) eliminated even these 
by feeding back a force signal from a strain gauge on the tracking handle to the power amplifier of a 
torque motor connected to their sensor. Conversely, Neilson et al. (1993) artificially introduced mechan-
ical characteristics into the movement of their response marker by having a linear second-order filter 
as the controlled system; by an appropriate transfer function (H(z) = 0.4060/(1 – 1.061z−1 + 0.4610z−2)), 
they were able to introduce inertial lag and under-damping (resonant peak at 2.0 Hz). Miall et al. (1985) 
and Myall et al. (2008) introduced delays between their sensor and the displayed response so that they 
could study the effect of delayed visual feedback on performance. Soliveri et al. (1997) used both first-
order (velocity) and zero-order (position) linear control dynamics to investigate differences in learning 
between parkinsonian and control subjects and between on- and off-medication. Navon et al. (1984) 
used a combination of velocity and acceleration control dynamics in their study on dual-axis tracking. 
Nonlinear transfer functions, such as second-order Volterra (fading memory) nonlinearities, have also 
been used in tracking controlled systems, primarily as a means for investigating adaptive inverse model-
ing mechanisms in the brain relating to voluntary movement (Davidson et al., 2000, 2002; Ghous and 
Neilson, 2002).

Controlled system dynamics can also be changed during a task. In “critical tracking,” a novel varia-
tion of pursuit tracking conceived by Jex (1966), the delay of the controlled system increases during the 
task. There is no external target but instead the subject’s own instability acts as an input to an increas-
ingly unstable controlled system, Y(s) = Kλ/(s –λ), in which the level of instability, represented by the 
root λ (= 1/T), is steadily increased during the task until a preset error is exceeded. The task has been 
described as analogous to driving a truck with no brakes down a hill on a winding road (Potvin et al., 
1977). The task has been applied clinically (Potvin et al., 1977; Kondraske et al., 1984; Behbehani et al., 
1988) and shown to be a reliable measure of small changes in neurological function. Alternatively, gain-
change step tracking (Neilson et al., 1995), in which the gain of the control-display relation is increased 
or decreased without warning, has been used to investigate adaptive mechanisms in healthy subjects 
(O’Dwyer and Neilson, 1998; Myall, 2010) and those with Parkinson’s disease (Myall, 2010).

Having a torque motor as part of the sensor opens up several new possibilities. It can be operated as 
a “torque servo,” in which applied torque is independent of position (Kondraske et al., 1984), or a “posi-
tion servo,” in which applied torque is proportional to position error (together with velocity damping 
if desired) (Thomas et al., 1976). By adding external force perturbations, it is possible to measure and 
study neuromuscular reflexes and limb transfer function (i.e., stiffness, viscosity, and inertia), such 
as by applying constant velocity movements (Kondraske et al., 1984) or pulsatile (van den Berg et al., 
1987), sinusoidal (Gottlieb et al., 1984), or random (Kearney and Hunter, 1983; van den Berg et al., 
1987) force perturbations. Alternatively, the torque motor can be used to alter controlled-system char-
acteristics in tracking tasks for studies and/or improvement of voluntary movement. For example, van 
den Berg et al. (1987) cancelled unwanted controller characteristics. Chelette et al. (1995) used “force 
reflection” to improve tracking performance in both normal subjects and those with spasticity, and 
Johnson et al. (1996) used antiviscous loading to investigate the cause of poor tracking in patients with 
Parkinson’s disease.
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31-15Measurement and Analysis of Sensory-Motor Performance

31.3.9  Sensor-Display Compatibility

It is generally accepted that the level of compatibility between sensor and display in continuous tracking 
tasks influences the accuracy of performance (Neilson and Neilson, 1980). The perfectly compatible sen-
sor is the display marker itself (Poulton, 1974) where the subject holds and moves the response marker 
directly such as with a light-pen in tracking (Neilson and Neilson, 1980), rotary pursuit (Welford, 
1968; Schmidt, 1982), handle on a two-joint mechanical arm (Abend et al., 1982), self-paced 2-D trac-
ing tasks (Driscoll, 1975; Stern et al., 1984; Hocherman and Aharon-Peretz, 1994; Gowen and Miall, 
2006; Reithler et al., 2006), direct 2-D tracking on a touch-sensitive screen (Engel and Soechting, 2000), 
or 3-D tracking tasks in a virtual environment (Mrotek et al., 2006; Myall et al., 2008). Similarly, van 
den Berg et al. (1987) achieved a high sensor-display compatibility by having the LED arrays for target 
and response displayed directly above a horizontally moving handle. However, the majority of track-
ing tasks have sensors which are quite separate from the response marker displayed on an oscilloscope 
or computer screen. Sensor-display compatibility can be maximized in this case by having the sensor 
physically close to the display, moving in the same direction as the marker, and with a minimum of 
controlled system dynamics (e.g., zero-order). In the case of a joystick in a 2-D task, for example, direct 
compatibility (Left–Right → Left–Right) is easier than inverse compatibility (Left–Right → Right–Left), 
which is easier than noncompatibility (Left–Right → Up–Down). In contrast, fore-aft movements on a 
joystick appear to possess bidirectional compatibility in that Fore–aft → Up–Down seems as inherently 
natural as Fore–aft → Down–Up (i.e., no obvious inverse).

Sensor-display compatibility may not, however, be overly critical to performance. For example, 
Neilson and Neilson (1980) found no decrement in performance on random tracking of overall error 
scores, such as mean absolute error, between a light pen and a 1-D joystick; nevertheless, the latter did 
result in a decrease in gain, an increase in phase lag, and an increase in the noncoherent response com-
ponent. Conversely, normal subjects find incompatible 2-D tracking very difficult to perform, taking 
up to 4 h of practice to reach a level of performance equal to that seen on pre-practice 2-D compatible 
tracking (Neilson et al., 1998).

31.3.10  Response Sampling Rates

Although some workers have manually analyzed tracking data from multichannel analog chart record-
ings (Flowers, 1976; Beppu et al., 1984) or analog-processed results (Potvin et al., 1977), the majority have 
used computers, sometimes via a magnetic tape intermediary (Flowers, 1978a; Day et al., 1984; Miall 
et al., 1985), to digitize data for automated analyses. Sampling rates used have varied from 10 Hz (Neilson 
and Neilson, 1980), through 20 Hz (Cooper et al., 1989; Neilson et al., 1993, 1998), 28.6 Hz (Jones and 
Donaldson, 1986), 30.2 Hz (Watson et al., 1997; Watson and Jones, 1998), 40 Hz (Frith et al., 1986), 60 Hz 
(Viviani and Mounoud, 1990), 60.3 Hz (= screen’s vertical interrupt rate) (Viviani and Mounoud, 1990; 
Jones et al., 1993; Poudel et al., 2008, 2010b), 66.7 Hz (O’Dwyer and Neilson, 1998), 100 Hz (Abend et al., 
1982; Stern et al., 1984; Hocherman and Aharon-Peretz, 1994; Jasper et al., 2010), to as unnecessarily high 
as 240 Hz (Myall et al., 2008), 250 Hz (Day et al., 1984), and 500 Hz (Feys et al., 2005).

For the most part, a relatively low sampling rate is quite satisfactory for analysis of tracking perfor-
mance as long as the Nyquist criterion is met and there is appropriate analog or digital low-pass filtering 
to prevent aliasing. Spectral analysis indicates that the fastest of voluntary arm movements have no 
power above about 8–7 Hz (Jones and Donaldson, 1986). This is very similar to the maximal voluntary 
oscillations of the elbow of 4–6 Hz (Neilson, 1972; Leist et al., 1987) and to maximum finger tapping 
rates of 6–7 Hz (Muir et al., 1995). The sampling rate can be reduced still further if the primary inter-
est is only of coherent performance, whose bandwidth is only of the order of 2 Hz for both kinesthetic 
stimuli (Neilson, 1972) and visual stimuli (Leist et al., 1987; Neilson et al., 1993); that is, performance 
above 2 Hz must be open-loop and, hence, learned and pre-programmed (Neilson, 1972). Thus, from an 
information theory point of view, there is no need to sample tracking performance beyond, say, 20 Hz. 
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31-16 Human Performance Engineering

However, a higher rate may well be justified on the grounds of needing better temporal resolution than 
50 ms for transient or cross-correlation analysis, unless one is prepared to regenerate the signal between 
samples by some form of interpolation (e.g., sinc, spline, polynomial).

31.3.11  Divided-Attention Tasks

Jones and Pollock (2004) developed a divided-attention task (or dual-task) in which the subject has to 
divide their attention between two simultaneously performed tasks: a continuous visuomotor Preview-
Random Tracking task and an intermittent visuoperceptual Arrows Perception task (Figure 31.6). Prior 
to the dual task, the subject is tested separately on the tracking and arrows perception tasks so as to 
obtain baseline performance data from which degradation of performance on each of the tasks when 
performed concurrently can be quantified. This divided-attention task has proven of particular value 
as one of the tests in off-road driving assessment of healthy older subjects (Hoggarth et al., 2010) and 
persons with neurological disorders (Innes et al., 2007, 2009b; Hoggarth, 2011).

Other implementations of divided-attention tasks also have continuous random tracking as the pri-
mary task but with a concurrent memory task (van Eekelen and Kerkhof, 2003; Jasper et  al., 2010), 
concurrent digit span task (Baddeley et al., 1986; Dalrymple-Alford et al., 1994), concurrent auditory 
odd-ball task (Backs, 1997), or an intermittent visual detection task (Gazes et al., 2010), the latter being 
used to investigate the existence of competition for a capacity-limited “bottle-neck” stage.

31.3.12  Other Measures

Several researchers have further extended the information which can be derived from upper-limb track-
ing performance by comparison with other simultaneously recorded biosignals. The most common of 
these is the EMG, particularly integrated EMG due to its close parallel to force of contraction (Neilson, 
1972) and where the tracking movement is constrained to be around a single joint. The EMG has been 
used together with step tracking for fractionating reaction times into premotor and motor components 

FIGURE 31.6 Divided-attention task (or dual-task) in which subjects have to divide their attention between 
two simultaneously performed tasks: a continuous Preview-Random Tracking task and an intermittent Arrows 
Perception task. While tracking the preview-random target (8.0-s preview) with a steering wheel, 12 consecutive 
sets of four arrows are displayed on the same screen (for 4.8 s, with 1.0 s between sets) and the subjects aim to 
maintain accurate tracking of the target while scanning the arrows and determining whether or not all 4 arrows 
are pointing in the same direction.
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31-17Measurement and Analysis of Sensory-Motor Performance

(Anson, 1987; Sheridan et al., 1987) and confirmation of open-loop primary movements (Sittig et al., 
1985; Sheridan et al., 1987). In smooth tracking, correlation/cross-spectral analysis between the EMG 
and limb position has been used to study limb dynamics (Neilson, 1972; Barr et al., 1988).

In contrast, Cooper et al. (1989) measured the EEG at four sites during 2-D random tracking to show 
that slow changes in the EEG (equivalent to the Bereitschafts potential preceding self-paced voluntary 
movement), particularly at the vertex, are correlated with the absolute velocity of the target.

Simultaneous measurement of hand and eye movements has been undertaken by several researchers 
to investigate aspects of coupling between eye and hand movements. Eye movements were measured 
via electrooculography (horizontal only) (Warabi et al., 1986; Leist et al., 1987) or the infra-red limbus 
reflection technique (Gibson et al., 1987; Sailer et al., 2002; Feys et al., 2005). Interestingly, Leist et al. 
(1987) found that ocular pursuit and self-paced oscillations were limited to about 1.0 and 2.2 Hz, respec-
tively, whereas the equivalent values for arm movements are 2 and 4–6 Hz, respectively.

31.3.13  Standard Assessment Procedures

Having designed and constructed a tracking task or set of tracking tasks with the characteristics neces-
sary to allow measurement of the sensory-motor control performance under investigation, it is essential 
that this process be complemented by a well formulated set of standard assessment procedures. These 
must include (a) standard physical setup, in which positioning of subject, sensor, and screen are tightly 
specified and controlled, as well as factors such as screen brightness, room lighting, and so on and (b) 
standardized instructions. The latter are particularly important in tasks where speed-accuracy trade-
off (Fitts, 1954; Agarwal and Logsdon, 1990; Murata and Iwase, 2001; Battaglia and Schrater, 2007; 
Jax et al., 2007; Helton et al., 2009; Bye and Neilson, 2010) is possible. This applies particularly to step 
tracking, in which leaving the tracking strategy completely up to subjects introduces the possibility of 
misinterpretation of differences in performance on certain measures, such as reaction time, rise time, 
and mean absolute error. For example, subjects need to know if it is more important to have the initial 
movement end up close to the target (i.e., emphasis on accuracy of primary movement) or to get within 
the vicinity of the target as soon as possible (i.e., emphasis on speed of primary movement); the latter 
results in greater under/overshooting but also tends to result in lower mean errors). The most common 
approach taken is to stress the importance of both speed and accuracy with an instruction to subjects of 
the form: “Follow the target as fast and as accurately as possible.”

31.3.14  Test and Experimental Protocols

The design of appropriate test and experimental protocols is also a crucial component of the track-
ing task design process (Pitrella and Kruger, 1983). When comparisons are made between different 
subjects, tasks, and/or conditions, careful consideration needs to be given to the paramount factors of 
matching and balancing to minimize the possibility of significant differences being due to some bias or 
confounding variable other than that under investigation. Matching can be achieved between experi-
mental and control subjects in an inter-subject design by having average or paired equivalence on age, 
gender, education, and so on, or through an intra-subject design in which the subjects act as their 
own control in, say, a study of dominant versus nondominant arm performance. Balancing is primar-
ily needed to offset order effects due to learning which pervade much of sensory-motor performance 
(Welford, 1968; Poulton, 1974; Schmidt, 1982; Frith et al., 1986; Jones et al., 1990). A study by Jones and 
Donaldson (1989) provides a good example of the application of these principles. Their study, aimed at 
investigating the effect of Parkinson’s disease on predictive motor planning, involved 16 Parkinsonian 
subjects and 16 age- and sex-matched control subjects. These were then divided into eight subgroups in 
a three-way randomized cross-over design so as to eliminate between- and within-session order effects 
in determining the effect of target type, target preview, and medication on tracking performance.
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31-18 Human Performance Engineering

31.4  Analysis of Sensory-Motor Performance
Analyses of raw tracking data provide performance information which is objective and quantitative and 
which can be divided into two broad classes:

• Measures of global (or overall or integrated) accuracy of performance.
• Measures of characteristics of performance.

31.4.1  Measures of Global Accuracy of Performance

The most commonly used measure of global or overall accuracy is the mean absolute error (MAE) 
(Poulton, 1974; Jones and Donaldson, 1986), which indicates the average distance the subject was away 
from the target irrespective of side; it is also variously called average absolute error (Poulton, 1974), 
modulus mean error (Poulton, 1974), mean rectified error (Neilson and Neilson, 1980), and, simply, 
tracking error (Kondraske et al., 1984; Behbehani et al., 1988). In contrast, the mean error, or constant 
position error, is of little value as it simply indicates only the extent to which the response is more 
on one side of the target than the other (Poulton, 1974). Measures of overall performance which give 
greater weighting to larger errors include mean square error (Neilson et al., 1993), root mean square 
error (McRuer and Krendel, 1959; Poulton, 1974; Navon et al., 1984; O’Dwyer and Neilson, 1995), vari-
ance of error (Neilson and Neilson, 1980), and standard deviation of error (Poulton, 1974). Relative 
or normalized error score equivalents of these can be calculated by expressing the raw error scores as 
a percentage of the respective scores obtained had subject simply held the response marker station-
ary at the mean target position (Poulton, 1974; Neilson and Neilson, 1980; Day et al., 1984); that is, 
No-Response = 100%. Alternatively, the relative root mean square error, defined as the square root 
of the ratio of the mean square value of the error signal to the mean square value of the target signal 
expressed as a percentage, allows tracking errors to be compared across tests using different target 
signals (Neilson et al., 1998).

Overall coherence is an important alternative to the above measures when it is wished to assess the 
similarity between target and response waveforms but there is a substantial delay between them. It pro-
vides an estimate of the proportion of the response that is correlated with the target over all frequencies 
(O’Dwyer and Neilson, 1995; O’Dwyer et al., 1996).

An issue met in viewing error scores from the perspective of Kondraske’s elemental resource model 
(1995, 2006a,b) is the unifying requirement of its associated general systems performance theory (GSPT) 
that all dimensions of performance must be in a form for which a higher numerical value indicates a 
superior performance. Thus, scores which state that a smaller score indicates a superior performance, 
including reaction times, movement times, and all error scores, need to be transformed into perfor-
mance scores. For example:

• Central response speed = 1/(reaction time)
• Information processing speed = 1/(8-choice reaction time)
• Movement speed = 1/(movement time)
• Tracking accuracy = 1/(tracking error)

As transformation via inversion is nonlinear, the distributions of raw error scores and derived per-
formance will be quite different. This has no effect on ordinal analyses, such as nonparametric statistics, 
but will have some effect on linear analyses, such as parametric statistics, linear regression/correlation, 
and so on, and may include improvements due to a possible greater normality of the distributions of 
derived performances. An alternative transformation which would retain a linear relationship with the 
error scores is

• Tracking accuracy (%) = 100 – Relative tracking error
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31-19Measurement and Analysis of Sensory-Motor Performance

However, while this gives a dimension of performance with the desired “bigger is better” character-
istic, it also raises the possibility of negative values, implying an accuracy worse than zero!—the author 
can attest to some subjects ending up with error scores worse than the hands–off score. Irrespective of 
GSPT, there is no doubt that it is beneficial to deal conceptually and analytically with multiple perfor-
mance measures when all measures are consistently defined in terms of “bigger is better.”

Time on target is a much cruder measure of tracking performance than all of the above but it has 
been used reasonably widely due to it being the result obtained from the pursuit rotor. The crudeness 
generally reflects (a) a lack of spatiotemporal sampling during a task (i.e., simple summation of time 
on target only) preventing the possibility of further analysis of any form, and (b) a task’s performance 
ceiling due to the target having a finite zone within which greater accuracy, relative to center of zone, 
is unrewarded. This latter factor can, however, be used to advantage for the case where the investigator 
wishes to have control over the difficulty of a task, to gain, for example, similar levels of task difficulty 
across subjects irrespective of individual ability. This attribute has been used very effectively with 2-D 
random tracking tasks to minimize the confounding effects of major differences in task load between 
experimental and control subjects in dual-task studies of impairment of central executive function in 
subjects with Alzheimer’s disease (Baddeley et al., 1986) and Parkinson’s disease (Dalrymple-Alford 
et al., 1994).

31.4.2  Measures of Characteristics of Performance

Measures of global accuracy of tracking performance can detect and quantify the presence of abnor-
mal sensory-motor control performance capacities with considerable sensitivity. Conversely, they are 
unable to give any indication of which of the many subsystems or performance resources in the overall 
sensory-motor system are, or may be, responsible for the abnormal performance. Nor can they provide 
any particular insight into the underlying neuromuscular control mechanisms of normal or abnormal 
performance.

Four approaches can be taken to provide information necessary to help identify the sensory-motor 
subsystems and their properties responsible for the characteristics of observed normal and abnormal 
performance:

• Batteries of neurologic sensory-motor tests: These tests can be used to, at least ideally, isolate and 
quantify the various sensory, motor, cognitive, and integrative functions and subsystems involved 
in sensory-motor performance as measured globally by, for example, tracking tasks.

• Functional decomposition: Fractionation of the various performance resources contributing to 
tracking performance.

• Traditional signal processing approaches: Time domain (ballistic and nonballistic) and frequency 
domain techniques.

• Graphical analysis: This has primarily been developed for measurement and investigation of 
changes in performance and underlying performance resources over time.

31.4.3  Batteries of Neurologic Sensory-Motor Tests

Potvin and colleagues (1975, 1985), now led by Kondraske et al. (1984, 2006), have developed an impres-
sively comprehensive battery of tests for quantitative evaluation of neurologic function, covering a number 
of sensory, motor, cognitive, and sensory-motor functions and performance resources. Similarly, Jones 
and colleagues (Jones et al., 1993, 2002; Heitger et al., 2007; Innes et al., 2009a) have developed a battery of 
computerized sensory-motor and cognitive tests (SMCTests™) which, in addition to several tracking tasks, 
includes tests of component performance resources including visuoperception, nontracking visuomotor 
ability (ballistic movements, static and dynamic steadiness), complex attention, visual search, decision 
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31-20 Human Performance Engineering

making, impulse control, planning, and divided attention. Many of these tests have been specifically 
designed to isolate and quantify the various performance resources involved in tracking tasks and in driv-
ing. There is, therefore, a close resemblance between some of the component tests and the tracking tasks, 
and between several tests and on-road driving, so as to maximize the validity of inter-test comparisons.

31.4.4  Functional Decomposition of Tracking Performance

There are three main approaches whereby tracking performance can be fractionated or decomposed 
into its functional components: sensory, perceptual, cognitive, motor planning, and motor execution.

The first approach involves breaking the ballistic response in step tracking into reaction time, move-
ment time, overshoot, and settling time (Flowers, 1976; Jones and Donaldson, 1986; Behbehani et al., 
1988; Watson et al., 1997) (see Section 31.4.6). This allows indirect deductions about cognitive, motor 
planning, and motor execution functions, although the distinction between cognitive and motor ele-
ments is often unclear.

The second approach involves calculation of differentials in tracking performance from inter-trial 
alterations in target and/or controlled system dynamics. This has been successfully used to demon-
strate and study deficits in Parkinson’s disease with respect to predictive motor planning (Flowers, 
1978c, 1978a; Stern et al., 1983; Bloxham et al., 1984; Day et al., 1984; Sheridan et al., 1987; Jones and 
Donaldson, 1989; Soliveri et al., 1997; Watson et al., 1997) and acquisition/modification of motor sets 
(Frith et al., 1986), and increased reliance on visual feedback (Flowers, 1976, 1978a; Cooke et al., 1978; 
Warabi et al., 1988; Klockgether and Dichgans, 1994; Liu et al., 1999). This approach has also been used 
successfully to demonstrate and investigate internal inverse models in the brain (see Section 31.5.5).

The third approach allows a more direct identification of the contribution of certain elemental 
resources to tracking performance during a specific tracking run. For example, by introducing the 
concept of a visuoperceptual buffer zone, it is possible to estimate the contribution of visuoperceptual 
function to tracking performance (Jones et al., 1996). This technique has been used to demonstrate that 
impaired visuoperceptual function in Parkinsonian subjects plays only a minor role in their poor track-
ing performance (Jones et al., 1996) but, conversely, that impaired tracking performance in stutterers is 
predominantly due to reduced dynamic visuospatial perception (Jones et al., 2002). Furthermore, the 
visuoperceptual function can itself be fractionated into visual acuity, static perception, and dynamic 
perception (Jones and Donaldson, 1995).

31.4.5  Time-Domain Analysis of Tracking Performance: Nonballistic

There are several run-averaged biases which can indicate the general form of errors being made, 
particularly when the tracking performance is subnormal. Positive side of target (%) and direction 
of target (%) biases reflect a greater proportion of errors occurring to the right of the target or while 
the target is moving to the right, respectively (Jones and Donaldson, 1986) which, if substantial, may 
indicate the presence of some visuoperceptual deficit. Similarly, the side of screen bias (assuming 
mean target position is mid-screen) (Jones and Donaldson, 1986) is identical to the mean error or 
constant position error.

Perhaps the single most important measure of performance, other than mean absolute or RMS 
error, for nontransient targets is that of the average time delay, or lag, of a subject’s response with 
respect to the target signal. The lag is most commonly defined as being the shift τ corresponding to 
the peak of the cross-correlation function, calculated directly in the time domain or indirectly via 
the inverse of the cross-spectrum in the frequency domain. Although simulation studies indicate 
that these techniques are at least as accurate and as robust to noise/remnants as the alternatives listed 
below (Watson, 1994), one needs to be aware of a bias leading to underestimation of the magnitude 
of the lag (or lead) due to distortion of the standard cross-correlation function, but specifically of 
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31-21Measurement and Analysis of Sensory-Motor Performance

the peak toward zero shift. The distortion arises due to the varying overlap of two truncated signals 
(i.e., the target and the response) resulting in the multiplication of the cross-correlation function by 
a triangle (maximum at τ = 0 and zero at τ = NTs, assuming signals of equal length NTs. This effect 
is minimal as long as both signals have a mean value of zero. Temporal resolution is another fac-
tor deserving consideration. If desired, greater resolution than that of the sampling period can be 
obtained by interpolation of the points around the peak of the cross-correlation function by some 
form of curve fitting (e.g., inverse parabola).

An alternative estimate of the lag, which has proven accurate on simulated responses, can be gained 
from the least squares time delay estimation by finding the time shift between the response and target 
at which the mean square error is minimized (Fertner and Sjölund, 1986; Jones et al., 1993; Innes et al., 
2009a). Another approach, phase shift time delay estimation, calculates lag from the gradient of the 
straight line providing a best least squares to the phase points in the cross-spectrum (Watson et al., 
1997). This phase-correlation technique has, however, proven more robust to noncorrelated remnants in 
the response than the other procedures (Watson, 1994).

Several measures used to help characterize within-run variability in performance include variance of 
error (Neilson and Neilson, 1980), standard deviation of error (Poulton, 1974), and inconsistency (Jones 
and Donaldson, 1986).

31.4.6  Time-Domain Analysis of Tracking Performance: Ballistic

Irrespective of any of the above nonballistic analyses, evaluation of step tracking performance usually 
involves separate ballistic or transient analysis of each of the step responses. This generally takes the 
form of breaking up each response into three phases (Figure 31.7): (1) reaction time phase, or the time 
between onset of step stimulus and initiation of movement defined by exit from a visible or invisible 
reaction zone, (2) primary movement phase, or the open-loop ballistic movement made by most normal 
subjects aiming to get within the vicinity of the target as quickly as possible, the end of which is defined 
as the first stationary point, and (3) secondary correction phase, comprising one or more adjustments 
and the remaining time needed to enter and stay within target zone. The step measures from individual 

PME
TZ

RZ

RT RMT SCT

TET
MAE

PV

FIGURE 31.7 Transient response analysis. Tolerance zones: RZ is the reaction zone, and TZ is the target zone. 
Performance parameters: RT is the reaction time, PMT is the primary movement time, SCT is the secondary cor-
rection time, TET is the target entry time, PV is the peak velocity, PME is the primary movement error, and MAE 
is the mean absolute error over a fixed interval following stimulus.
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31-22 Human Performance Engineering

steps can then be grouped into various step categories to allow evaluation of the effect of step size, spatial 
predictability, arm dominance, and so on, on transient performance.

Accuracy of the primary aimed movement can also be characterized in terms of a constant error and 
a variable error (standard deviation of error), which are considered to be indices of accuracy of central 
motor programming and motor execution, respectively (Guiard et al., 1983).

Phase-plane (velocity vs. position) plots provide an alternative means for displaying and examining 
the qualitative characteristics of step tracking responses. In particular, they have proven valuable for 
rapid detection of gross abnormalities (Potvin et al., 1985). Behbehani et al. (1988) introduced a novel 
quantitative element to phase-plane analysis by deriving an index of coordination [IN1] where Vm is the 
maximum velocity during an outward and return step and A is the area within the resultant loop on the 
phase-plane plot.

31.4.7  Frequency-Domain Analysis of Tracking Performance

Cross-correlation and spectral analysis have proven invaluable tools for quantifying the frequency-
dependent characteristics of the human subject. The cross-spectral density function, or cross-spec-
trum Sxy( f ), can be obtained from the random target x(t) and random response y(t) by taking the 
Fourier transform of the cross-correlation function rxy(τ), that is, Sxy( f ) = F[rxy(τ)], or in the fre-
quency domain via Sxy( f ) = X( f )Y( f )*, or by a nonparametric system identification approach (e.g., 
“spa.m” in MATLAB®). The cross-spectrum provides estimates of the relative amplitude (i.e., gain) 
and phase-lag at each frequency. Gain, phase, and remnant frequency response curves provide 
objective measures of pursuit tracking behavior, irrespective of linearity, and are considered a most 
appropriate “quasi-linear” tool for obtaining a quantitative assessment of pursuit tracking behavior 
(Neilson and Neilson, 1980). From the cross-spectrum one can also derive the coherence function 
which gives the proportion of the response signal linearly related to the target at each frequency: 
Cxy( f ) = |Sxy( f )|2/Sx( f )Sy( f ), where Sxy( f ) is the cross-spectral density between x(t) and y(t), and Sx( f ) 
and Sy( f ) are the auto-spectral densities of x(t) and y(t), respectively. Lynn et al. (1977) emphasized, 
however, that one must be cognizant of the difficulty representing tracking performance by a quasi-
linear time-invariant transfer function, especially if the run is of short duration or if the target wave-
form is of limited bandwidth, as the results can be so statistically unreliable as to make description 
by a second- or third-order transfer function quite unrealistic. Van den Berg et al. (1987) chose four 
parameters to characterize tracking performance: low-frequency performance via the mean gain 
of transfer function at the 3 lowest of 8 frequencies in target signal, high-frequency performance 
via the frequency at which the gain has dropped to less than 0.4, mean delay via shift of peak of the 
cross-correlation function, and remnant via power in frequencies introduced by subject relative to 
total power. Spectral and coherence analysis have been used to demonstrate (i) the human band-
width is about 2 Hz for both kinesthetic tracking (Neilson, 1972) and visual tracking (Neilson et al., 
1993), (ii) a much greater relative amplitude of the second harmonic in the response of cerebellar 
subjects in sine tracking (Miller and Freund, 1980), (iii) a near constant lag except at low frequencies 
in normal subjects (Cassell et al., 1973), (iv) adaptation to time-varying signals (Bösser, 1984), (v) 
formation of internal models of novel visuomotor relationships for feedforward control in the brain 
(Davidson et al., 2000) and confirmation, via simulations, of nonlinear control systems in the brain 
(Davidson et al., 2002), (vi) 2-D asymmetry in postural steadiness (Myklebust et al., 2009), and (vii) 
formation of non-dynamic and dynamic inter-limb synergies in a bimanual tracking task (O’Dwyer 
and Neilson, 1995).

31.4.8  Graphical Analysis of Tracking Performance

Most of the above analyses give quantitative estimates of some aspect of performance which is effec-
tively assumed to be constant over time, other than for experimental and inter-session fluctuations. This 
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31-23Measurement and Analysis of Sensory-Motor Performance

is frequently not the case, especially for more complex sensory-motor tasks such as tracking. Changes in 
performance over time can be divided into two major classes:

• Class I—Owing to factors such as practice, fatigue, sleep deprivation, lapses of responsiveness, 
time of day, stimulants and depressants, lack of practice, and changes in task complexity, in which 
the underlying performance resources remain unchanged.

• Class II—Owing to factors in which there have been abrupt or gradual changes in underlying 
performance resources at one or more sites in the sensory-motor system due to aging, trauma, or 
pathology.

Studies of Class I factors using tracking tasks are complicated most by the intra-run difficulty of a task 
not being constant. Changes in tracking accuracy during a run can be viewed via graphs of target, response, 
and/or errors. The latter is particularly informative for sinusoidal targets for which the mean absolute 
errors can be calculated over consecutive epochs, corresponding to sine-wave cycles, and plotted both in 
a histogram form and as a smoothed version of this (Jones and Donaldson, 1981, 1986). As complexity of 
task is constant over short epochs (cf. random pursuit task), the error graph gives an accurate measure of 
a subject’s time-dependent spatiotemporal accuracy that is not confounded by changes in task difficulty 
and, therefore, gives a true indication of changes in performance due to factors such as learning, fatigue, 
and lapses in concentration. However, the same can also be achieved for pseudo-random targets due to 
their periodicity over longer intervals, such as 128 s (Peiris et al., 2006) and 30 s (Poudel et al., 2008). This 
is of considerable value when time-on-task effects are required following extended continuous-tracking 
sessions, such as 60 min (Peiris et al., 2006) and 50 min (Poudel et al., 2010a).

Neilson et al. (1998) devised an alternative procedure for intra-run analysis, termed micro-movement 
analysis, based upon segmentation of the X and Y deflections of the response cursor on the basis of dis-
continuities, flat regions, and changes in direction of the response. They used this to identify changes 
in visuomotor coupling during the first 4 min of tracking on a 2-D compatible task following 4 h of 
practice on a 2-D incompatible task. They proposed that these changes are evidence of rapid switching 
between different sensory-motor models in the brain.

By comparison, as long as the task remains unchanged over successive runs, studies of class II fac-
tors using tracking tasks are complicated most by inter-run learning. Although most learning occurs 
over the first one or two runs or sessions, tracking performance can continue to improve over extended 
periods as evidenced by, for example, significant improvements still being made by normal subjects after 
nine weekly sessions (Jones and Donaldson, 1981). Consequently, a major difficulty met in the interpre-
tation of serial measures of performance following acute brain damage is differentiation of neurologic 
recovery from normal learning. Furthermore, it is not simply a matter of subtracting off the degree of 
improved performance due to learning seen in normal control subjects. Jones et al. (1990) developed 
graphical analysis techniques which provide for the removal of the learning factor, as much as is pos-
sible, and which can be applied to generating recovery curves for individual subjects following acute 
brain damage such as stroke. They demonstrated that, for tracking, percentage improvement in perfor-
mance (PIP) graphs give more reliable evidence of neurologic recovery than absolute improvement in 
performance (PIA) graphs due to the former’s greater independence from what are often considerably 
different absolute levels of performance.

31.4.8  Statistical Analysis

Parametric statistics (t-tests, ANOVA, discriminant analysis) are by far the most commonly used in 
studies of sensory-motor/psychomotor performance due, in large part, to their ability to draw out inter-
actions between dependent variables. However, there is often a strong case for using nonparametric 
statistics. For example, the Wilcoxon matched-pairs statistic may be preferable for both between-group 
and within-subject comparisons due to its greater robustness over its parametric paired t-test equivalent, 
with only minimal loss of power if data are parametric. This is important due to many sensory-motor 
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31-24 Human Performance Engineering

measures having very skewed distributions as well as considerably different variances between normal 
and patient groups.

31.5  Applications
Tracking tasks provide objective and quantitative measures and characteristics of sensory-motor con-
trol performance and capacities which have proven invaluable in six main classes of applications:

• Clinical screening for sensory-motor deficits
• Neurology and rehabilitation research
• Human performance and factors research (healthy subjects)
• Vocational and recruitment screening
• Modeling and prediction of human performance
• Computational modeling of the human brain

31.5.1  Clinical Screening for Sensory-Motor Deficits

An excellent example of tracking tasks being used in clinical practice for the detection and/or quanti-
fication of sensory-motor deficits (arising from one or more lesions in one or more sites in the sensory-
motor system) is that of providing objective measures in off-road driving assessment systems/programs 
(Jones et al., 1983; Croft and Jones, 1987; Gianutsos, 1994; Korteling and Kaptein, 1996; Fischer et al., 
2002; Innes et al., 2007, 2011a; Hoggarth et al., 2010).

31.5.2  Neurology and Rehabilitation Research

Tracking tasks have been used extensively in research studies of neurological disorders and rehabilita-
tion. They have been used to identify and/or quantify sensory-motor control deficits in:

• Parkinson’s disease (Cassell et  al., 1973; Cooke et  al., 1978; Flowers, 1976, 1978a, 1978c; Stern 
et al., 1983; Baroni et al., 1984; Bloxham et al., 1984; Day et al., 1984; Frith et al., 1986; Stern, 
1986; Warabi et al., 1986, 1988; Gibson et al., 1987; Sheridan et al., 1987; Behbehani et al., 1988, 
1990; Stelmach and Worrington, 1988; Jones and Donaldson, 1989; Dalrymple-Alford et  al., 
1994; Hocherman and Aharon-Peretz, 1994; Klockgether and Dichgans, 1994; Watson, 1994; 
Hufschmidt and Lücking, 1995; Johnson et  al., 1996; Soliveri et  al., 1997; Watson et  al., 1997; 
Gonzalez et al., 2000; Fischer et al., 2002; Allen et al., 2007)

• Stroke (Lynn et  al., 1977; De Souza et  al., 1980; Jones and Donaldson, 1981; Stelmach and 
Worrington, 1988; Jones et al., 1989, 1990; O’Dwyer et al., 1996; Fischer et al., 2002; Notley et al., 
2007; Siengsukon and Boyd, 2009a,b)

• Traumatic brain injury (Jones and Donaldson, 1981; Korteling and Kaptein, 1996; Heitger et al., 
2004, 2007; Innes et al., 2007)

• Cerebral palsy (Neilson et al., 1990, 1992)
• Cerebellar disorders (Beppu et al., 1984, 1987; Becker et al., 1991; Cody et al., 1993; Deuschl et al., 

1996)
• Alzheimer’s disease (Baddeley et al., 1986; Kisacanin et al., 2000; Hoggarth, 2011)
• Stuttering (Neilson, 1980; Neilson et al., 1992; Zebrowski et al., 1997; Jones et al., 2002)

There are also many examples of patients being assessed repeatedly on tracking tasks for periods 
up to 12 or more months. This has been done to quantify recovery following stroke (Lynn et al., 1977; 
De Souza et al., 1980; Jones and Donaldson, 1981; Jones et al., 1989, 1990) and traumatic brain injury 
(Jones and Donaldson, 1981; Heitger et al., 2004, 2007). Tracking tasks have also been used to quantify 
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31-25Measurement and Analysis of Sensory-Motor Performance

changes due to medication, such as in Parkinson’s disease (Baroni et al., 1984; Johnson et al., 1996; 
Soliveri et al., 1997).

31.5.3  Human Performance and Factors Research

Tracking tasks have been used extensively in research studies of human performance in healthy subjects 
and, in particular, on factors having beneficial or detrimental effects on sensory-motor performance, 
such as:

• Learning by practicing the same task or similar tasks (Poulton, 1974; Notterman et  al., 1982; 
Schmidt, 1982; Jones et al., 1986, 1990)

• Learning by adapting to major changes in the tracking task, such as in controlled system dynamics, 
sensor-display relationships, target signals, or visual display of target or response (O’Dwyer and 
Neilson, 1995; Backs, 1997; Foulkes and Miall, 2000; Davidson et al., 2002; Miall and Jackson, 2006)

• Age (Jones et al., 1986)
• Gender (Jones et al., 1986)
• Dimensionality (Watson and Jones, 1998)
• Time-of-day (Dalrymple-Alford et al., 2003; Jasper et al., 2010)
• Time-on-task (Welford, 1968; Potvin and Tourtellotte, 1975; Van Orden et al., 2000; Petrilli et al., 

2005; Peiris et al., 2006; Poudel et al., 2010a)
• Alcohol (Dalrymple-Alford et al., 2003)
• Reduced alertness due to physical fatigue, mental fatigue, sleepiness, sleep deprivation, and/or 

trait propensity for excessive daytime sleepiness leading to impaired performance. Decrements in 
performance can range right from minimal (e.g., mildly drowsy) to complete lapses of responsive-
ness due to lapses of sustained attention, microsleeps (0.5–15 s), or nodding off (>15 s) (Makeig 
and Jolley, 1996; Peiris et al., 2006, 2011; Davidson et al., 2007; Huang et al., 2008; Poudel et al., 
2008, 2010a; Jones et al., 2010)

• Loss of task-orientated attention due to distraction, which can be external or internal and volun-
tary or involuntary

31.5.4  Vocational and Recruitment Screening

The origin of tracking tasks actually goes back to World War II when they were developed and used to help 
screen and train aircraft pilots (Welford, 1968; Poulton, 1974). Since then, they have been used to a rather 
limited degree to determine suitability for recruitment into various vocations in terms of confirming a 
minimum level, or detecting a superior level, of sensory-motor performance capacity. There is consider-
able scope for much greater use of tracking tasks alongside psychometric tests as part of the recruitment 
process, particularly in the transport and defense sectors. They also have the potential to help identify 
persons with a trait for excessive daytime sleepiness and, even more so, a high propensity for microsleeps 
(Innes et al., 2010, 2011b) in occupations in which complete lapses of responsiveness can lead to fatal/multi-
fatality accidents, such as in long-distance driving, aircraft piloting, air-traffic control, and train drivers.

31.5.5  Modeling and Prediction of Human Performance

Tracking tasks have played an important role in modeling and prediction of human performance. Thus, 
in contrast to fractionation of performance on a high-level task (e.g., tracking, driving) (see Section 
31.4.4), Kondraske et al. (1995, 2006a, b, 2006) have developed techniques for the reverse process. They 
have shown how their hierarchical elemental resource model, together with non-linear causal resource 
analysis (NCRA), can be used to predict performance on high-level tasks from performance on a 
number of lower-level tasks (Vasta and Kondraske, 1994; Kondraske et al., 1997, 2002; Fischer et al., 
2002; Gettman et al., 2003; Matsumoto et al., 2006; Kondraske and Stewart, 2009). This approach has 
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considerable potential in application areas such as rehabilitation. For example, it has been used in driv-
ing assessment programs to predict on-road driving ability from performance on several key lower-
level off-road/clinic-based tasks pertinent to driving, such as reaction time, visuospatial, cognitive, and 
tracking tasks (Fischer et al., 2002; Innes et al., 2007, 2009b; Hoggarth et al., 2010).

However, a caution: Innes et  al. (2011a) compared the ability of six modeling approaches to pre-
dict driving ability (as assessed by driving occupational therapists blinded to off-road results) based on 
performance on a battery of sensory-motor and cognitive tests (SMCTests™) (see Section 31.4.3) in 501 
people with brain disorders. At the classification level, they found that two kernel methods—support 
vector machine (SVM) and product kernel density (PK)—were substantially more accurate at classify-
ing on-road pass or fail (SVM 99.6%, PK 99.8%) than the four other models—kernel product density (KP 
81%), binary logistic regression (BLR 78%), discriminant analysis (DA 76%), and NCRA (74%). However, 
accuracy decreased substantially for all of the kernel models when cross-validation techniques were 
used to estimate prediction of on-road pass or fail in an independent referral group (SVM 76%, PK 73%, 
KP 72%) but decreased only slightly for BLR (76%) and DA (75%) (cross-validation of NCRA was not 
possible). From this, they concluded that, at least for this predictive problem, while kernel-based models 
are successful at modeling complex data at a classification level, this is likely to be due to overfitting of 
the data, which does not lead to an improvement in accuracy in independent data over and above the 
accuracy of other less complex modeling techniques.

31.5.6  Computational Modeling of the Human Brain

Through their continuous nature and versatility to incorporate different targets, different modes of 
tracking, different sensor-display compatibilities, control system dynamics, and so on, tracking tasks 
have proven a powerful experimental tool in helping develop, train, and validate computational models 
of the brain (Jex, 1966; Desmedt, 1978; Lynn et al., 1979; Bösser, 1984; Flash and Hogan, 1985; Neilson 
et al., 1992, 1998; Sriharan, 1997; Davidson et al., 1999, 2000, 2002; Engel and Soechting, 2000; Ariff 
et al., 2002; Ghous and Neilson, 2002; Neilson and Neilson, 2002, 2004; Miall and Jackson, 2006; Bye 
and Neilson, 2010). This includes experimental confirmation of the presence of internal inverse models 
(Davidson et al., 2000, 2002; Ghous and Neilson, 2002), investigations of intermittency (Vince, 1948; 
Miall et al., 1985; Neilson et al., 1988a; Foulkes and Miall, 2000; Oytam et al., 2005), investigations of 
the formation of synergies (O’Dwyer and Neilson, 1995; Neilson and Neilson, 2002; Oytam et al., 2005), 
and confirmation, rejection, or refinement of computational models of sensory-motor function (Neilson 
et al., 1988a, b, 1992, 1995, 1998; O’Dwyer and Neilson, 1995; Davidson et al., 2002; Ghous and Neilson, 
2002; Miall and Reckess, 2002; Miall and Jackson, 2006).

Defining Terms
Accuracy of movement: The primary dimension of performance achieved by the sensory-motor control 

performance resource.
Basic element of performance: Defined by a functional unit and a dimension of performance, for exam-

ple, right elbow flexor + speed.
Dimension of performance: A basic measure of performance such as speed, range of movement, 

strength, spatial perception, spatiotemporal accuracy.
Functional unit: A subsystem such as right elbow flexor, left eye, motor memory.
Performance capacity: The maximal level of performance possible on a particular dimension of 

performance.
Performance resource: One of a pool of elemental resources, from which the entire human is modeled 

(Kondraske, 2006a), and which is available for performing tasks. These resources can be sub-
divided into life sustaining, environmental interface, central processing, and skills domains, 
and have a parallel with basic elements of performances.
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31-27Measurement and Analysis of Sensory-Motor Performance

Sensor: [in context of tracking tasks] A device for measuring/transducing a subject’s motor output.
Sensory-motor control: A primary performance resource responsible for overall sensory-motor perfor-

mance and, in particular, the dimension of performance of accuracy of movement. The other 
performance resources on which accuracy of movement is also dependent are strength, reac-
tion time, speed, steadiness, and so on.

Sensory-motor performance: Overall/integrated performance of the sensory-motor system, compris-
ing multiple constituent performance resources and associated dimensions of performance, 
including strength, speed, reaction time, steadiness, visual acuity, visuoperception, and sen-
sory-motor control.

Sensory-motor system: Comprises all performance resources responsible for all types of sensory-motor 
performance. Encompasses sensory systems (visual, auditory, proprioceptive, tactile), motor 
systems (muscles, neuromuscular pathways and reflexes, motor planning, motor execution 
and coordination), and many higher-level systems in the CNS (visuoperception, cognition, 
memory, central executive, arousal, attention, default mode, etc.).

Spatiotemporal accuracy: The class of accuracy most required by tasks which place considerable 
demand on attainment of simultaneous spatial and temporal accuracy. This refers particularly 
to paced tasks such as tracking, driving, ball games, and video games.

Tracking task: A laboratory apparatus and associated procedures which have proven one of the most 
versatile means for assessing and studying the human “black-box” sensory-motor system by 
providing a continuous record of a subject’s response, via some sensor, to any one of a large 
number of continuous and well-controlled stimulus or target signals.
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