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Abstract
A system capable of reliably detecting lapses in responsiveness (‘lapses’) has the potential to
increase safety in many occupations. We have developed an approach for detecting the state of
lapsing with second-scale temporal resolution using data from 15 subjects performing a
one-dimensional (1D) visuomotor tracking task for two 1 h sessions while their
electroencephalogram (EEG), facial video, and tracking performances were recorded. Lapses
identified using a combination of facial video and tracking behaviour were used to train the
classification models. Linear discriminant analysis was used to form detection models based
on individual subject data and stacked generalization was utilized to combine the outputs of
multiple classifiers to obtain the final prediction. The performance of detectors estimating the
lapse/not-lapse state at 1 Hz based on power spectral features, approximate entropy, fractal
dimension, and Lempel-Ziv complexity of the EEG was compared. Best lapse state estimation
performance was achieved using the detector model created using power spectral features with
an area under the curve from receiver operating characteristic analysis of 0.86 ± 0.03
(mean±SE) and an area under the precision-recall curve of 0.43 ± 0.09. A novel technique
was developed to provide improved estimation of accuracy of detection of variable-duration
events. Via this approach, we were able to show that the detection of lapse events from
spectral power features was of moderate accuracy (sensitivity = 73.5%, selectivity = 25.5%).

1. Introduction

Human operators continue to have a critical hands-on role in
many transportation sectors. The human operator can become
fatigued, lose motivation and become considerably less
effective, especially during long-term monotonous activities
such as driving (Bittner et al 2000). In many cases, the
operator can experience brief instances of complete loss of
responsiveness—‘lapses’. These can occur from a complex
interaction of factors such as boredom, physical and mental
exhaustion, lack of sleep or reduced quality of sleep, and the

6 Author to whom any correspondence should be addressed.

influence of circadian rhythms (Freund et al 1995). Lapses
generally manifest as either lapses of sustained attention
(Weissman et al 2006) or behavioural microsleeps (Peiris
et al 2006). The term ‘lapse’ has also been used by others
to describe delayed responses to target stimuli (Dorrian et al
2005, Weissman et al 2006) and response errors (Padilla et al
2006).

Such lapses are an occupational hazard for professional
transport operators, such as coach and truck drivers, train
drivers, air traffic controllers, and long-haul flight crew, who
are expected to maintain schedules, and work shifts performing
monotonous tasks for extended periods of time, despite the
level of physical or mental fatigue they may be feeling. A

1741-2560/11/016003+15$33.00 1 © 2011 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/1741-2560/8/1/016003
mailto:richard.jones@vanderveer.org.nz
http://stacks.iop.org/JNE/8/016003


J. Neural Eng. 8 (2011) 016003 M T R Peiris et al

complete loss of responsiveness, even for a few seconds, while
engaged in a critical task such as driving a vehicle or landing
an aircraft can have consequences ranging from minor injuries
to multiple fatalities.

A device able to detect the onset of lapses in real time using
physiological cues from an individual would be especially
beneficial to workers in the transport sector and would help
minimize accidents caused by lapsing while performing tasks
such as driving. In contrast to a substantial number of
drowsiness estimation approaches in the literature (Belyavin
and Wright 1987, Jung et al 1997, Grace 2001, Grace et al
1998, Lal and Craig 2002, 2005, Lin et al 2005a, 2005b,
2006, Makeig and Inlow 1993, Makeig and Jung 1995,
Matousek and Petersen 1983, Papadelis et al 2007, Van Orden
et al 2000, Arjunan et al 2009, Davidson et al 2007, Golz
et al 2007, Sommer et al 2009, Johns 2003, Jap et al 2009,
2010, Eoh et al 2005, Schleicher et al 2008), there have been
few serious attempts to detect lapses. These include EEG-
based approaches utilizing ANNs (Sommer et al 2002, 2009,
Davidson et al 2007, Golz et al 2007), video- or EOG-based
eye-closure-based systems utilizing PERCLOS (Wierwille and
Ellsworth 1994), and fusion of multiple behavioural and
physiological features (Golz et al 2007).

Several drowsiness/microsleep detection systems based
upon eye closure, eye gaze, and/or head pose have
advanced to the level of becoming available on the
market. These generally use a video-based approach
(SeeingMachines—www.seeingmachines.com; SmartEye—
www.smarteye.se) or an infra-red reflectrometry approach
(Optalert—www.optalert.com). These systems appear
sensitive in the detection of longer microsleeps and, hence,
are an important advance towards reducing accidents in the
transport sector. However, they are only able to reliably detect
microsleeps several seconds after their onset. Only EEG has
the intrinsic potential to allow detection of lapses close to, and
even before, their onset (Davidson et al 2007).

EEG-based alertness/drowsiness detection systems to
date have used larger time scales to smooth the performance
metric, resulting in a time resolution of 1 min or more (Makeig
et al 1996, Lin et al 2005a, 2005b, 2006, Jung et al 1997,
Sommer et al 2009, Arjunan et al 2009). Furthermore,
several drowsiness/alertness estimation methods also required
training a model for each individual, to predict their
performance in subsequent sessions (Lin et al 2005a, 2005b,
2006, Jung et al 1997).

Our previous paper (Peiris et al 2006) demonstrated that
lapses are a common phenomenon, even in non-sleep-deprived
subjects performing a monotonous task during normal work
hours, with subjects lapsing frequently (39.3 ± 12.9/h) (mean
± SE). Analysis also revealed that these lapses are relatively
brief (3.4 ± 0.5 s). The current paper presents an approach
used for the detection of lapses with high temporal resolution
using changes in the power spectrum and nonlinear features
of the EEG.

Several researchers have used EEG spectral power to
detect changes in the level of alertness and arousal (Huang
et al 2001, Jung et al 1997, Makeig and Inlow 1993, Makeig
and Jung 1995, 1996). Therefore, it seemed appropriate to

begin the search for a reliable lapse detector by determining if
there are EEG power spectral changes associated with lapses
and, if so, determining the efficacy of a spectral-based lapse
detection system.

Normal EEG is understood to have both linear and
nonlinear dynamic properties, leading to EEG patterns with
different degrees of complexity (Natarajan et al 2004).
Thus it was hypothesized that nonlinear dynamical analysis
techniques might prove a better approach to detect lapses than
traditional linear methods (such as power spectral analysis)
as they make better use of nonlinearities and dynamics in the
EEG.

In recent years, progress in nonlinear dynamics
theory has contributed new tools, useful in the analysis
of the EEG (Elbert et al 1994). For example,
nonlinear analytical techniques have been used to investigate
the EEG associated with various physiological and
pathological states, such as during meditation (Aftanas
and Golocheikine 2002), sleep and slow-wave sleep
(Kobayashi et al 2001, Ferri et al 1996), epilepsy (Elger
et al 2000, Lehnertz 1999), and for assessing the depth of
sedation (Klonowski et al 2006). There is evidence to suggest
that nonlinear methods can be used to detect changes in the
EEG that are not visible via visual observation or FFT (Le Van
Quyen et al 2001).

Thus, in addition to spectral analysis, three nonlinear
methods—fractal dimension (FD), approximate entropy
(ApEn), and Lempel-Ziv complexity (LZ)—were investigated
to determine their efficacy in EEG-based detection of lapses.

2. Methods

2.1. Subjects

As previously reported (Peiris et al 2006), 15 normal healthy
male volunteers aged 18–36 years (mean = 26.5) performed
a visuomotor tracking task while EEG, facial video, and
tracking behaviour was recorded. The age range and gender
were restricted to limit the sources of variation in the data.
Based upon self-report, no subject had a current or previous
neurological or sleep disorder and all had visual acuities of 6/9
or better in each eye. All subjects considered that they had
slept normally the previous night (mean = 7.8 h, SD = 1.2 h,
min = 5.1 h) and were considered non-sleep-deprived. Ethical
approval for the study was obtained from the Canterbury Ethics
Committee.

2.2. Visuomotor tracking task

Subjects were asked to perform a one-dimensional (1D)
visuomotor tracking task with a continuous random preview
target (Jones and Donaldson 1986; Jones 2006). The task,
developed in-house, had a steering wheel (395 mm diameter,
wheel-to-screen gain = 1.075 mm deg−1) to control an arrow-
shaped cursor located near the bottom of the screen. The eye-
to-screen distance was 136 cm. Subjects were provided with an
8 s preview of a pseudo-random target (bandwidth 0.164 Hz,
period 128 s) which scrolled down the screen at a rate of
21.8 mm s−1. The task required smooth movements over a
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175◦ range of the steering wheel and measured a subject’s
ability to keep the point of the arrow on the moving target.
The position of the steering wheel was sampled at 64 Hz using
a potentiometer mounted on the shaft of the wheel.

2.3. Video

Head and facial features were recorded from an analogue video
camera (Sony Handycam) positioned 1 m in front of the subject
using a frame rate of 25 Hz. The video was time-stamped. The
time-synchronized video provided an independent measure of
alertness and enabled us to confirm the presence of behavioural
microsleeps.

2.4. EEG

EEG was recorded from electrodes at 16 scalp locations
and digitized at 256 Hz (bandwidth 0.1–100 Hz) with a
16-bit A–D converter. Electrodes were placed according
to the international 10–20 system (Klem et al 1999). The
following standard bipolar derivations were used in the feature
calculations: Fp1-F7, F7-T3, T3-T5, T5-O1, Fp2-F8, F8-T4,
T4-T6, T6-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F4, F4-
C4, C4-P4, and P4-O2. Bipolar channels were preferred over
referential channels as they reject common-mode noise better.

2.5. Procedure

Each subject attended two sessions at least one week apart
(mean 17 days, range 7–50 days) and held, following lunch,
between 12.30 pm and 5.00 pm. They were instructed to
stay alert and perform the task to the best of their ability for
a full continuous hour in both sessions. Participants were
instructed to refrain from taking any alertness-altering drug
or medication (e.g. stimulants—coffee, amphetamine, tea;
depressants—alcohol) 4 h prior to all test sessions.

3. Analysis

3.1. Lapse index

One of the first challenges in the data analysis phase was
to develop an independent measure of whether or not the
subjects were lapsing, i.e. a lapse index (LI). We used two
independent measures—tracking task performance and facial
video—to determine and categorize lapses in a subject.

Lapses in tracking performance are most obvious when the
response cursor simply stops moving for an extended period
while the target is moving or when the tracking response is
non-coherent with the target. Only the first category—flat
spots—was included in an intentionally conservative analysis,
as lapses in the second category are difficult to identify with
confidence. Flat spots occurring when the target velocity was
approximately 0 (at turning points) were not counted, as at
these times the subject could track adequately without moving
the response cursor.

The video recording of each session was conservatively
rated (by MP) (Peiris et al 2006), without knowledge of the
corresponding tracking performance. Being ‘blind’ to tracking

performance ensured that an independent measure of alertness
was obtained from the video data. The video was rated on
a 6-level scale: 1 = alert, 2 = distracted, 3 = forced eye
closure while alert, 4 = light drowsy, 5 = deep drowsy, and
6 = behavioural microsleep (BM). Criteria similar to
Wierwille and Ellsworth (1994) were used to define the video
rating scale. Video BMs (i.e. sleep events) were identified by
prolonged eye-lid closure, sometimes accompanied by rolling
upward or sideways movements of the eyes, head-nodding,
and often terminated by waking head jerks. Transitions in the
video recording had a time resolution of 1.0 s.

Intervals in which flat spots and video BMs overlapped
in time were defined as definite BMs. EEG data of subjects
who had at least one definite BM over the two sessions were
selected for lapse detector design (N = 8). Lapses, as defined
by the presence of either a video BM and/or a flat spot, were
selected as the events to be detected by an EEG-feature-based
lapse detector. The LI was generated at a frequency of 1 Hz.

3.2. EEG feature extraction—an overview

Each EEG channel was processed by rejecting epochs
contaminated with artefacts, as preliminary work had
shown that removal of artefacts from the EEG improved
detector performance. Noise introduced by EEG artefacts
may be counterproductive during model formation and
classifier performance evaluation and, hence, reduce classifier
effectiveness. As the first step of the artefact removal stage,
the EEG was pre-processed using independent components
analysis (ICA) to remove eye blink artefacts (Delorme and
Makeig 2004, Jung et al 2000). The eye-blink artefact-free
signal from each derivation was then filtered to remove 50 Hz
mains activity using an IIR notch filter with a Q-factor of 35.

The mean and standard deviation of the first 2 min
(baseline) of the signal were calculated. The signal was then
transformed into z-scores relative to the baseline of the signal,
thus enabling comparisons to be made between subjects and
sessions. Epochs of 2 s containing samples with an absolute
z-score >3.0 were rejected as artefacts and excluded from
analysis in the signal processing algorithms.

A feature is defined here as an arbitrary time series
extracted from a single EEG derivation using a given signal
processing algorithm. For example, if power spectral analysis
is used to process the EEG, an extracted feature is the power
in the alpha band over a set of consecutive epochs.

An epoch length of 2.0 s and an overlap of 1.0 s (50%)
between successive epochs were used for all signal processing
algorithms. The sliding process generated feature samples at
a rate of 1 Hz, resulting in a 3600-element feature vector for
1 h recording. The 2.0 s epoch length was chosen to obtain
a reasonable degree of spectral resolution (where appropriate)
and the overlap of 1.0 s was chosen to ensure reasonable
temporal resolution (an estimate every second) for the features.
This was important since a key requirement of the desired lapse
detection system was its ability to detect short lapses (1–2 s).

3.3. Power spectral analysis

Data in each 2 s epoch were first detrended to remove any linear
trends (i.e. DC shifts) and the spectrum then estimated using a

3



J. Neural Eng. 8 (2011) 016003 M T R Peiris et al

Table 1. Spectral features calculated from each EEG derivation.

Feature Frequency band

Mean spectral powera

Delta (δ) 1.0–4.5 Hz
Theta (θ ) 4.5–8.0 Hz
Alpha 1 (α1) 8.0–10.5 Hz
Alpha 2 (α2) 10.5–12.5 Hz
Alpha (α) 8.0–12.5 Hz
Beta 1 (β1) 12.5–15.0 Hz
Beta 2 (β2) 15.0–25.0 Hz
Beta (β) 12.5–25.0 Hz
Gamma 1 (γ 1) 25.0–35.0 Hz
Gamma 2 (γ 2) 35.0–45.0 Hz
Gamma (γ ) 25.0–45.0 Hz
High >45.0 Hz
Overall 0.1–100 Hz

Spectral power ratiosb

θ/β, θ/α, α/β, δ/θ , α/δ, β/δ, –
β2/α, β1/β2

a Absolute values and normalized values.
b Absolute values only.

40th-order Burg model (Naidu 1996). This parametric model
method was selected to estimate power spectra due to its ability
to provide a high degree of frequency resolution for short
data records (Subasi 2005). A high model order was found
necessary to obtain adequate separation of the spectral bands
of interest as lower-order Burg models ‘blurred’ the spectrum,
hindering the separation of spectral peaks in adjacent bands.

The spectral features listed in table 1 were calculated.
For a given epoch, the spectral power in each EEG band
was calculated by finding the mean power across the band.
Next, the normalized power was calculated for each band by
dividing the spectral power in that band by the overall mean
power across the entire spectrum. In addition, power ratios
between bands were also calculated (table 1). Power spectral
analysis produced 13 spectral power (SP), 12 normalized
spectral power (NSP), and 9 power ratio (PR) features per
EEG derivation, giving a total of 34 features per derivation
and 34 × 16 = 544 spectral features over the 16 derivations.

3.4. Fractal dimension

Fractal dimension (FD) provides an estimate of the complexity
of a signal. It has the advantage that it can be calculated
directly in the time domain without reconstruction and, hence,
provides a direct link between EEG variations and complexity
changes (Accardo et al 1997).

The brain has been interpreted as a nonlinear dynamical
system whose state can be described by self-similar curves
(Lutzenberger et al 1995). EEG signals are an example
of such curves and their complexity, as estimated by FD,
has been shown to correspond to different physiopathological
conditions (Accardo et al 1997). The FD of any signal varies
between 1 and 2: the more complex a waveform, the higher
is its FD. FD has been shown to be effective as a means
of comparing differences in the complexity of EEG signals
recorded from patients with bipolar mood disorder and controls
(Bahrami et al 2005) and in the analysis of epileptic ictal events
(Bullmore et al 1994).

Higuchi’s algorithm (Higuchi 1988) was used to estimate
the fractal dimension (FD) of each EEG derivation because it is
computationally efficient and also provides a stable estimate
of FD using a lower number of samples of data (N ! 125)
compared to other FD algorithm implementations (Accardo
et al 1997). This allowed the FD to be estimated with the
same temporal resolution as other features.

The parameters suggested by Accardo et al (1997) were
used for estimating the FD of the EEG (kmax = 6, in which k is
the scale size, corresponding to successive samples apart).
The FD was estimated for each EEG derivation, resulting
in 16 FD feature vectors per session with a value of FD
every 1.0 s.

3.5. Approximate entropy

Entropy is a concept that addresses system randomness and
predictability (Grassberger and Procaccia 1983). It quantifies
the predictability of the amplitude values of a signal, based
on knowledge of amplitudes of previous samples (Bruhn
et al 2000). Approximate entropy (ApEn) is non-
negative, with a larger number indicating more irregularity,
unpredictability, and randomness of the raw signal (Zhang
and Roy 2001). A perfectly regular data series, in which
knowledge of prior values enables the subsequent value to
be predicted perfectly, has an associated ApEn measure of
0. However, with increasing irregularity, the prediction of a
subsequent value becomes increasingly worse, leading to an
increased ApEn value.

ApEn has been used in a variety of contexts including
human respiratory variability (Burioka et al 2003), estimation
of depth of anaesthesia (Zhang and Roy 2001, Bruhn et al
2000) and differentiating between sleep stages (Burioka et al
2005).

The two parameters in the ApEn algorithm are the
embedding dimension m and tolerance of the noise filter r.
The embedding dimension m specifies the number of previous
values used for the prediction of the subsequent value and the
noise filter value r is expressed as a proportion of the standard
deviation of the amplitude values of the n samples in the data
sequence (Bruhn et al 2000). Values suggested in the literature
for m and r of 2 and 0.2, respectively, were used in the ApEn
algorithm (Bruhn et al 2000, Pincus 1995, Pincus et al 1991,
Zhang and Roy 2001). ApEn was estimated for each EEG
derivation, resulting in 16 ApEn feature vectors per session
with an ApEn value calculated every 1.0 s.

3.6. Lempel-Ziv complexity

LZ complexity (Lempel and Ziv 1976) provides a non-
parametric measure of complexity of a 1D signal, such as
the EEG. Its advantages are that it is simple to compute, does
not require long data segments to be effective, and is more
effective for real-time EEG processing (Zhang et al 1999,
Zhang and Roy 1999, Radhakrishnan and Gangadhar 1998)
compared to other complexity measures such as correlation
dimension (Yaylali et al 1996) and neural complexity (Tononi
et al 1994). It has been useful in quantifying the depth
of anaesthesia (Zhang and Roy 2001), predicting epileptic
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Figure 1. A block diagram depicting the creation of a lapse classification model.

seizures (Radhakrishnan and Gangadhar 1998), and analysing
the dynamical behaviour of the background EEG of patients
with Alzheimer’s disease (Abasolo et al 2006).

Lempel and Ziv proposed that the complexity of a finite
sequence could be evaluated from the point of view of a ‘simple
self-delimiting learning machine which, as it scans a given
digit sequence S = s1, s2, . . . , sn from left to right, added
a new word to its memory every time it discovered a sub-
string of consecutive digits not previously encountered’. The
complexity counter c(n) is increased by one unit each time a
new sub-string of characters is encountered along S (Lempel
and Ziv 1976, Radhakrishnan and Gangadhar 1998). Only
two operations are permitted in the construction of a string:
copying old patterns and inserting new ones (Zhang and Roy
2001).

LZ complexity features were estimated for each EEG
derivation, resulting in 16 LZ complexity feature vectors per
session with a value calculated every 1.0 s.

3.7. Feature matrix assembly

A feature matrix for a session’s EEG data was created by
grouping various combinations of EEG features calculated
using the signal processing algorithms described earlier. This
was achieved by placing m feature vectors (each of length n)
as row vectors in the feature matrix.

For algorithms which produced one feature per EEG
derivation (such as FD, ApEn and LZ), the generated
EEG feature matrix was of size 16 by n. For example,
the EEG feature matrix based on FD measures had 16 FD
feature vectors as row vectors in the matrix. However, for
measures such as power spectra, which had multiple features
per EEG derivation, the size of the EEG feature matrix was
much larger. These were arranged in the EEG feature matrix
as rows, in order of EEG derivation. That is, all the spectral
features for the first derivation were listed in the first 34 rows
of the feature matrix, followed by the features of the second
derivation from rows 35 to 69, etc until all features from all
derivations were entered into the feature matrix. This resulted
in 544 (34 × 16) feature vectors in the matrix for power spectra.

3.8. Classification models to detect lapses from EEG features

Principal component analysis (PCA) was used to transform the
feature vectors into orthogonal components, so as to reduce the
redundancy within the original features and aid the formation
of the classification models.

The principal components (PCs) were ranked in order
of descending importance in terms of the amount of variance

explained. It was then possible to reduce the dimensionality of
the data by using the first p of the total m PCs (p < m) without
significant loss of information by choosing p appropriately.

The next step in the design of the lapse detection system
was to train a classification model capable of detecting
lapses in new subjects, using data from their feature matrices
(figure 1). The process involved forming a classification
model, based upon linear discriminant analysis (LDA) (Fisher
1936) and using PCs extracted from the feature matrix as
predictive variables and LI as the grouping variable. The
lapse indices and EEG feature matrices from both sessions of
each subject were concatenated to form a single feature matrix
(m × 7200) and LI (1 × 7200) per subject. These data were
then used to form a classification model for each of the eight
subjects.

Firstly, the mean over the entire length of the record was
calculated for each vector of the feature matrix. The means
were then subtracted from the feature vectors to produce zero-
mean vectors in the feature matrix. This was a necessary
prerequisite for PCA. Following this, PCA was performed on
the mean-subtracted m × n feature matrix to derive m PCs,
each of length n. The PCs were then converted to z-scores
by subtracting the overall means and dividing by the standard
deviations. The z-score transformed PCs and the LI were used
to form a linear discriminant classification model for each
subject, via MATLAB R© discriminant analysis toolbox (Kiefte
1999).

3.9. Combining multiple classification models to form an
overall detection model

Combining the output of several models generally increases
predictive performance over a single model (Witten and Frank
2000). Stacked generalization (or simply ‘stacking’) (Wolpert
1992) was chosen to combine the outputs of the multiple lapse
classifiers in this work. Stacking aims to determine how to
best combine the base models via an additional meta-learner
algorithm.

The outputs of the base models (also known as level-0
models) were fed as the inputs to the meta-learner (level-
1 model). During the classification phase of the stacked
learner, new cases were fed into the level-0 models, each
producing a classification value at their output. These level-
0 predictions were then fed into the level-1 model which
combined them linearly by scaling the output of each model by
its weight, summing the scaled model outputs, and applying a
threshold to the summed output to obtain an overall prediction
(figure 2).

It has been suggested that some of the test data be held
back and used to train the level-1 model, with the level-0
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Figure 2. Diagram showing the internal structure of the meta-learner used in the stacked generalization approach. The model weights are
depicted by w1, w2, . . . , wN and these are used by the meta-learner to scale the level-0 model outputs before combining them to form an
overall prediction.

models being trained on the remaining data (Witten and Frank
2000). Once the level-0 models are trained, the holdout data
are classified using the level-0 models, which then form the
training data for the level-1 model. Since the holdout data
were not used to train the level-0 models, their predictions are
unbiased and, therefore, the level-1 training data accurately
reflect the true performance of the level-0 models. However,
the downside of the holdout method is that it deprives the
level-1 model of some of the training data. This problem
was overcome by applying eightfold cross-validation which
ensured that all of the training data were used to train the
level-1 model. Each instance of the training data was used in
one test-fold of the cross-validation and the predictions from
the models built from the corresponding training fold were
used to build the level-1 training set. This generated a level-1
training set for each level-0 training set.

3.10. Overall detection model validation

The following steps were followed to validate the overall lapse
detection model.

(1) Reserve one of the eight subjects as the validation subject
and put his/her data aside.

(2) Create classification models using data from the seven
remaining subjects.

(3) Select one subject from the seven subjects (test subject)
in () and feed their features into the six level-0 models
(excluding their own) for classification. This yields six
level-0 outputs which are stored in a matrix. Note that
the ‘raw’ output of the classifiers (i.e. continuous values
between 0.0 and 1.0 indicating the probability of a given
sample being a lapse) was used in the steps that follow.

(4) Determine the meta-learner weights for the six level-0
model outputs by linearly combining them to estimate the
LI of the test subject. Constrained least-squares fitting
(coefficients restricted to >0) was used to combine the
output of the six models. This approach minimized
the least-squares error between the combined output
(i.e. meta-learner output) and LI. It produced a set of
positive regression coefficients for the six models, with

larger coefficients associated with models contributing a
greater degree towards the meta-learner output. These
coefficients were stored in a matrix.

(5) Determine the optimal threshold value required to be
applied to the meta-learner output to obtain a binary
classification (i.e. lapse/not lapse) by selecting the
threshold that yields the maximum phi correlation
between the meta-learner output and LI.

(6) Repeat steps (3) to (5) until all seven subjects are used as
test subjects.

(7) Calculate mean meta-learner weights and mean meta-
learner output threshold by averaging over the seven test
subjects.

(8) Feed the validation subject’s data to all seven level-0
models in the stacked generalization system and obtain the
final prediction from the meta-learner output. The meta-
learner scales the individual predictions of the level-0
models by the weights calculated in (7), sums predictions
of all level-0 models, and finally applies the output
threshold also determined in (7) to provide a final (binary)
prediction of lapse (1) or no-lapse (0).

(9) Calculate the correlation between the validation subject’s
LI and the meta-learner output after applying the mean
output threshold. The correlation measure used was the
phi correlation coefficient (ϕ) (Sheskin 1997) with each
validation subject’s phi coefficient denoted by ϕv .

(10) Repeat steps (1) to (9) and obtain ϕv for each of the eight
subjects.

(11) Calculate the mean across all eight values of ϕv to give
the overall detector performance.

Performance of the lapse detector was evaluated using several
metrics. The primary performance metric was the mean
phi correlation, as described above. In addition, two other
performance measures (which are independent of operating
point) were also calculated: (a) area under the receiver-
operator characteristic curve (AUC-ROC) and (b) area under
the precision-recall curve (AUC-PR). These calculations were
performed using the ROCR package (Sing et al 2005). The
performance of the classification models is quoted using all
three measures.
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The effect of using uniform meta-learner weights on
the performance of the overall lapse detector was also
investigated. This process is equivalent to removing the
stacked generalization section from the system described
above.

3.11. Contribution of features to discrimination

After determining the performance of the overall detection
model via cross-validation, it was possible to determine the
amount each feature contributed to the overall discrimination
ability of the model. Firstly, the discriminant coefficients
of each classification model were converted to standardized
discriminant coefficients. These coefficients were then
normalized and used to form a feedback weight vector. This
contained m elements, corresponding to the PC features used
to construct the classifier. That is, the feedback weight
vector’s elements indicated the relative contribution towards
lapse classification of each of the PCs. However, as each PC
was a linear combination of all input features, it was possible
to translate the feedback weight vector back to feature space
to determine the relative contribution of each of the original
features to the classification model. This was achieved by
multiplying the feedback weight vector by the inverse of the
PCA transformation matrix (P−1) calculated during PCA at
the model formation phase. This procedure provided the
relative contribution of each feature towards the classification
power of a particular level-0 model. The procedure was
repeated to calculate the relative contribution of features in
all level-0 models. However, the generalization performances
of the level-0 models were not equal and hence the relative
contributions of each level-0 model were adjusted according
to the model weights. These scaled contributions were then
summed to obtain the contribution of features towards the
overall detection model.

3.12. Detection of lapse events

In addition to estimating performance of detection of the
lapse state (in 1.0 s epochs), we also wished to determine the
detector’s ability to detect discrete lapse events. The following
novel procedure was used to determine lapse event detection
performance.

(1) An event signal was created. This was the same length as
the LI with a sampling frequency of 1 Hz.

(2) The event signal was initialized to a default value of 0,
which was defined as a true negative (TN) event.

(3) A predetermined optimum threshold was applied to the
overall lapse detector output to obtain binary detector
lapse events. A detector output of 1 was defined to
correspond to a detector lapse event, and a detector output
of 0 to correspond to the responsive state.

(4) The gold standard (i.e. LI) was traversed until a gold
standard lapse event was encountered.

(5) The detector output was checked to see if it equalled 1
during any portion of the gold standard lapse event. If yes,
the entire portion of the event signal corresponding with
the gold standard lapse event was marked as a true positive

(TP) event. Furthermore, the TP event was extended at
either end to include any overlapping detector lapse event.
If the detector output was 0 during the entirety of the gold
lapse event, the corresponding region of the event signal
was marked as a false negative (FN) event.

(6) The detector output was traversed until a detector lapse
event was encountered.

(7) The region of the event signal corresponding to the
detector lapse event was checked. If marked as a TN, the
region in the event signal corresponding to the detector
lapse event was re-marked as a false positive (FP) event.

(8) The number of TPs, FPs, TNs, and FNs in the event signal
were counted and the following performance parameters
calculated.

• Sensitivity [true positive rate or hit rate] = TP/(TP + FN)
• Selectivity [positive predictive value or precision] =

TP/(TP + FP)
• Specificity = TN/(TN + FP)
• Negative predictive value = TN/(TN + FN)
• Accuracy = (TP + TN)/(TP + TN + FP + FN)

An example of how the event signal was generated from gold
standard lapse events and detector lapse events is shown in
figure 3.

4. Results

The performance of a lapse detector can be measured both
in terms of ability to detect the lapse state (in 1 s epochs)
and ability to detect actual lapse events. Most of the
following results are with respect to lapse state. The relative
contributions of EEG features and derivations to the best
overall lapse detection model are also presented.

Detector performance reached a plateau after approxi-
mately 50 PCs but adding additional PCs to the model did
not cause over-fitting nor reduce overall cross-validation per-
formance. Therefore, it was decided to include all PCs in
the construction of subsequent lapse detector models as this
avoided having to determine the number of PCs to be used for
model formation.

4.1. Detector performance—spectral measures

Table 2 provides a summary of system performance for a lapse
detector based on spectral power (SP), normalized spectral
power (NSP), power ratios (PR) and combinations thereof.
Detector performances are shown for the two weighting
schemes (uniform and least-squares) used to scale the classifier
outputs to obtain the overall prediction. Detectors based
solely on SP, or incorporating SP with NSP, and utilizing
least-squares weights for combining the classifier outputs (to
obtain the overall prediction) provided the best generalization
performance (ϕ = 0.39). This was confirmed by observing
that SP and SP+NSP based detectors had the largest AUC-
ROC and AUC-PR values, as shown in table 3. As mentioned
earlier, AUC-ROC and AUC-PR being threshold-independent
measures emphasizes that SP and SP+NSP indeed give the best
performance out of the seven spectral-feature-based detectors.
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Figure 3. An example illustrating how the event signal (bottom plot) was derived from gold-standard events (top) and detector events
(middle). Note that in the top two plots, values of 1 and 0 indicate lapse events and responsive states, respectively.

Table 2. The mean detector performances (ϕ) for systems trained to detect lapses using spectral power, normalized spectral power and
power ratio measures. The detector performances for uniform and constrained least-squares weighting regimes are shown.

Detector performance (ϕ)

Detector Uniform weights Constrained least-squares
features (mean ± SE (min, max)) weights (mean ± SE (min, max))

Spectral power (SP) 0.38 ± 0.06 (0.06, 0.59) 0.39 ± 0.06 (0.13, 0.62)
Normalized spectral power (NSP) 0.32 ± 0.05 (0.12, 0.49) 0.33 ± 0.05 (0.11, 0.57)
Power ratios (PR) 0.34 ± 0.05 (0.12, 0.47) 0.33 ± 0.05 (0.10, 0.52)
SP+NSP 0.37 ± 0.06 (0.11, 0.56) 0.39 ± 0.06 (0.12, 0.62)
SP+PR 0.37 ± 0.06 (0.09, 0.57) 0.37 ± 0.06 (0.12, 0.57)
NSP+PR 0.32 ± 0.05 (0.10, 0.50) 0.32 ± 0.05 (0.09, 0.49)
SP+NSP+PR 0.36 ± 0.06 (0.10, 0.56) 0.36 ± 0.06 (0.11, 0.59)
Spectral asymmetry 0.18 ± 0.05 (0.02, 0.36) 0.17 ± 0.05 (0.02, 0.36)
Spectral coherence 0.15 ± 0.03 (0.00, 0.30) 0.15 ± 0.03 (0.00, 0.26)

Table 3. AUC-ROC and AUC-PR curves for spectral detectors used to detect lapses for both uniform and constrained least-squares
weighting regimes. These curves indicate detector performance independent of meta-learner output threshold (cf table 2).

Detector performance

Uniform weights Constrained least-squares weights

Detector features AUC-ROC (mean±SE) AUC-PR (mean±SE) AUC-ROC (mean±SE) AUC-PR (mean±SE)

Spectral power (SP) 0.86 ± 0.03 0.41 ± 0.09 0.86 ± 0.03 0.43 ± 0.09
Normalized spectral power (NSP) 0.82 ± 0.04 0.40 ± 0.09 0.82 ± 0.04 0.38 ± 0.09
Power ratios (PR) 0.83 ± 0.03 0.38 ± 0.09 0.83 ± 0.03 0.39 ± 0.09
SP+NSP 0.86 ± 0.03 0.42 ± 0.09 0.86 ± 0.03 0.44 ± 0.10
SP+PR 0.85 ± 0.03 0.42 ± 0.10 0.85 ± 0.03 0.43 ± 0.10
NSP+PR 0.81 ± 0.04 0.39 ± 0.09 0.81 ± 0.04 0.39 ± 0.09
SP+NSP+PR 0.85 ± 0.03 0.42 ± 0.10 0.85 ± 0.03 0.43 ± 0.10

Figure 4 shows the mean ROC and PR curve for the spectral
power (SP)-based detector. Overall, there was no difference in
performance between detectors trained using uniform weights
versus constrained least-squares weights.

4.2. Simple SP detector model (non-stacked)

The performance of a single detection model (cf stacked model
consisting of seven level-0 models followed by a level-1 meta-
learner) created by lumping data of seven subjects together and
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Table 4. Mean detector performances (ϕ) for systems trained to detect lapses using FD, ApEn, and LZ complexity measures, and using best
spectral features (SP, SP+NSP) combined with LZ. The detector performances for uniform and constrained-LS weighting regimes are shown.

Detector performance (ϕ)

Detector Uniform weights Constrained least-squares
features (mean ± SE (min, max)) weights (mean ± SE (min, max))

Fractal dimension (FD) 0.21 ± 0.04 (0.08,0.40) 0.20 ± 0.03 (0.10, 0.38)
Approximate entropy (ApEn) 0.24 ± 0.06 (0.01,0.42) 0.22 ± 0.04 (0.05, 0.38)
Lempel-Ziv complexity (LZ) 0.28 ± 0.06 (0.04,0.46) 0.26 ± 0.05 (0.07, 0.49)
SP+LZ 0.38 ± 0.06 (0.08, 0.59) 0.39 ± 0.06 (0.12, 0.63)
SP+NSP+LZ 0.36 ± 0.06 (0.09, 0.58) 0.38 ± 0.06 (0.12, 0.62)

(a)

(b)

Figure 4. (a) Mean ROC and (b) PR curve for the lapse detector
based on spectral power (SP) features. The vertical bars indicate
standard error on both plots.

validated using the remaining subject’s data was investigated
to compare its performance with the stacked approach.

Firstly, one subject was left out for validation. The data of
the remaining seven subjects were concatenated and a single
classification model created. The lumped data were then fed
through the model to determine the optimal output threshold.
Finally, the validation subject’s data was fed through the model
and the phi correlation between the classification model output
and the subject’s LI calculated. This procedure was repeated
until all eight subjects had been used for validation. The mean
performance of the simple detector model was the mean over
the eight validation runs.

The performance for the simple detector model using SP
features was ϕ = 0.31 ± 0.07 (0.06, 0.58). In comparison,

when using the same spectral features, the stacked approach
with LS constraints yields ϕ = 0.39 ± 0.06 (0.13, 0.62)
(table 2).

4.3. Detector performance—complexity measures

Tables 4 and 5 provide a summary of system performance
for a lapse detector using measures of complexity of the
EEG. The detector based on the LZ complexity measure
provided the largest detector performance, as shown by the
mean ϕ correlation. Another interesting observation is that
a detector using uniform classifier outputs to generate the
overall prediction performed better than a detector applying
constrained least-squares weights to the classification models
to arrive at the final prediction.

4.4. Detector performance—spectral and complexity features
combined

As LZ complexity yielded the best detector performance of the
three complexity measures, an investigation was undertaken
to determine if detector performance would be improved by
adding LZ to the spectral features. However, as tables 4 and
5 show, no performance improvement was seen by adding the
LZ feature to the spectral-power-based detector.

4.5. Contribution of features to discrimination in a best lapse
detector

The detector model based on spectral power was selected
for analysis as it displayed the highest performance level
(ϕ ≈ 0.39). The proportion of contribution of each spectral
feature towards the overall lapse detection model is shown
in figure 5. Each proportion was determined by summing
the contributions of the selected feature across all EEG
derivations in all level-0 models. Likewise, the proportion
of contribution to the overall detection model by each EEG
derivation was calculated by summing the contributions of
all spectral features of each EEG derivation across all level-
0 models. The proportion of contribution by each EEG
derivation is shown in figure 6. Generally, no strong spatial
patterns are visible across derivations (apart from T6-O2 which
has the largest contribution), indicating that each derivation
contributes approximately equally to the overall model. In
terms of power spectral features, changes in spectral power
in the alpha band seem to be the largest contributor to the
detection model (figure 5), although all frequency bands
contributed to detection performance.
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Table 5. AUC-ROC and AUC-PR curves for lapse detectors based on estimates of FD, ApEn, LZ complexity, and on best spectral features
(SP, SP+NSP) combined with LZ. These curves indicate detector performance independent of meta-learner output threshold.

Detector performance

Uniform weights Constrained least-squares weights

Detector features AUC-ROC (mean ± SE) AUC-PR (mean ± SE) AUC-ROC (mean ± SE) AUC-PR (mean ± SE)

Fractal dimension (FD) 0.77 ± 0.03 0.28 ± 0.07 0.75 ± 0.03 0.22 ± 0.05
Approximate entropy (ApEn) 0.77 ± 0.04 0.29 ± 0.07 0.74 ± 0.04 0.23 ± 0.05
Lempel-Ziv complexity (LZ) 0.80 ± 0.04 0.34 ± 0.08 0.78 ± 0.04 0.30 ± 0.08
SP+LZ 0.85 ± 0.03 0.42 ± 0.10 0.86 ± 0.03 0.44 ± 0.10
SP+NSP+LZ 0.85 ± 0.03 0.42 ± 0.10 0.86 ± 0.03 0.44 ± 0.10

Table 6. Event detection performance of the spectral-power-based lapse detector in terms of TPs, TNs, FPs, FNs, and sensitivity, specificity,
selectivity, NPV and accuracy percentages.

Event detector performance

Subject Total lapses TP TN FP FN Sen. Spec. Sel. NPV Accy

1 235 118 328 102 117 50.2 76.3 53.6 73.7 67.1
2 77 59 289 221 18 76.6 56.7 21.1 94.1 59.3
3 12 9 299 290 3 75.0 50.8 3.0 99.0 51.2
4 55 52 483 433 3 94.5 52.7 10.7 99.4 55.1
5 46 45 292 246 1 97.8 54.3 15.4 99.7 57.7
6 109 70 327 223 39 64.2 59.4 23.9 89.3 60.2
7 194 155 453 278 39 79.9 62.0 35.8 92.1 65.7
8 189 166 352 179 23 87.8 66.3 48.1 93.9 72.0
Overall 917 674 2823 1972 243 73.5 58.9 25.5 92.1 61.2

Figure 5. Mean proportion of contribution by each spectral feature
to the overall lapse detection model. The contribution of each
spectral feature was found by summing the contributions of the
selected feature across all EEG derivations. The spectral features
were delta (d), theta (t), alpha (a), alpha 1 (a1), alpha 2 (a2), beta
(b), beta 1 (b1), beta 2 (b2), gamma (g), gamma 1 (g1), gamma 2
(g2), high (h) and total (tot).

4.6. Detection of lapse events

The performance of the spectral-power-based lapse detector
in terms of its ability to detect lapse events is summarized in
table 6. Overall event detection performance was calculated by
concatenating the data from all eight subjects. This yielded an

Figure 6. Mean proportion of contribution by each EEG derivation
to the overall lapse detection model (based on power spectral
features). The contribution of each derivation was found by
summing the individual contributions of all spectral features within
each derivation.

overall sensitivity of 73.5%, selectivity of 25.5% and accuracy
of 61.2%.

4.7. Effect of lapse duration on detection

An analysis was conducted to determine the relationship
between the duration of a lapse and the likelihood of it being
detected. As before, the best-performing lapse detector (i.e.
the spectral-power-based detector) was used.
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The system successfully detected 362 lapses and missed
621 lapses over the eight subjects. The median durations of
detected and missed lapses in the pooled data from all eight
subjects were 4.0 and 3.0 s, respectively (note that the lapse
detection resolution is 1.0 s), the difference being marginal
(Wilcoxon: p = 0.059). There were 424 false detections over
the eight subjects.

An improvement in detector sensitivity and selectivity
with increasing lapse duration was observed. All lapses greater
than 20 s were detected by the system. There was only one
false detection beyond 10 s (duration = 37 s).

5. Discussion

We have developed and evaluated procedures for detection of
lapses of responsiveness based on linear (spectral), nonlinear,
and a combination of both linear and nonlinear features
of the EEG. The best detector performance was achieved
with a detector model created using spectral power (SP)
features and a meta-learner based upon stacked generalization
and constrained least-squares weights. Classification models
created using normalized spectral power (NSP) or power ratios
(PR) features had lower mean performances than the SP-based
detector. The performance of NSP/PR detectors showed a
marginal increase when SP features were added to the NSP/PR
features.

Of the three nonlinear feature-based detectors, the
LZ complexity feature-based detector showed the highest
performance, followed by the detector based on approximate
entropy. Interestingly, the use of uniform meta-learner
weights showed a marginally higher performance than using
constrained least-squares meta-learner weights (cf spectral
detectors) for all three nonlinear detectors in terms of ϕ, AUC-
ROC, and AUC-PR.

The performance of a lapse detector created by adding the
best performing nonlinear features (LZ complexity) to the best
linear features (SP) was no greater than the detector based on
SP alone. This is similar to the finding of Golz et al (2007)
and suggests that nonlinear features contribute no additional
information to the detector and that they effectively contain
information similar to SP features. Note that LZ complexity
generated 1 feature per channel to give 16 features per subject
(1 feature/channel × 16 channels), whereas SP contained 208
features (13 features/channel × 16 channels). One might
therefore propose that the LZ detector had a disadvantage over
SP in that it had a much smaller set of features compared
to SP and, hence, a lower detection performance due to this.
However, analysis showed that an SP detector limited to using
the first 16 PCs still performed better than the LZ detector
(ϕ = 0.36 ± 0.05 versus 0.28 ± 0.06).

We have also developed a novel procedure for estimating
measures of accuracy (sensitivity, specificity, etc) of
detection/classification of variable-length behavioural events,
particularly as it applies to events occurring over an extended
continuous recording. Using this approach, we were able
to show that the performance of the spectral-power-based
system in terms of lapse events was, at best, moderate, i.e. an
average detection sensitivity of 73% and a substantial number

of false detections. This low selectivity (25%) could have been
improved by increasing the output threshold of the overall
detector, but at the expense of decreased sensitivity.

It was also shown that the lapse detection system is more
likely to detect longer lapses indicated by increasing values
of sensitivity and selectivity with lapse duration. This is
presumed to be primarily due to longer lapses having more
pronounced EEG spectral changes related to microsleeps than
shorter lapses. Note, however, that an increase in detection
sensitivity with increased duration of lapse could also occur
simply by chance (i.e. even if the detector output had no
relationship with the occurrence of lapses), although this
would also tend to be offset by a concomitant increase in
longer-duration false detections.

EEG epochs with z-scores >3.0 were excluded as artefacts
and not used for training and testing the lapse detection models.
This may have biased the detector towards a higher level of
performance. However, the excluded proportion of epochs
was relatively low (8.5%) and, hence, it is unlikely that their
elimination caused the system to display a substantially higher
level of performance than what would have been obtained if
‘contaminated’ data were used to test the models.

Overall, the levels of performance and reliability
demonstrated by the lapse detection models are considered too
low to be of substantial value in real-world lapse/microsleep
detection applications. However, they are encouraging as this
task involved the substantial challenge of aiming to detect
lapses at a temporal resolution of 1.0 s. This contrasts with
studies that used a larger time scale to smooth performance
metrics resulting in an estimate of alertness/drowsiness on a
scale of 1 min or more (Makeig et al 1996, Lin et al 2005a,
2005b, 2006, Jung et al 1997, Sommer et al 2009, Arjunan
et al 2009).

It must be emphasized that the approach proposed in
this paper could not be used in real-time lapse detection, as
means of the entire length of EEG feature matrix vectors were
used during the normalization process. It is possible that
this could be overcome by using mean feature vector values
from previous sessions, but the efficacy of this still has to be
demonstrated.

One of the main considerations in developing the current
lapse detection system was the ability to generalize well to new
subjects. This is another important distinction between the
approach in this paper and that used in estimation of drowsiness
(Lin et al 2005a, 2005b, 2006, Jung et al 1997) which
required training a model for each individual, to predict their
performance in subsequent sessions. Since a model tuned for
each subject takes subtle differences in the individual’s EEG
into consideration, it is likely to yield superior performance.
However, a major disadvantage is that each user requires
substantial training prior to use of the device. Our expectation
is that the overall detector performance would increase if the
size of the training set was increased. Similarly, the small
number of eight subjects in the cross-validation is a limitation
of the current study. A larger number of subjects for cross-
validation would have provided us with greater confidence in
the generalization ability of the lapse detection model.

We have previously used normalized EEG log-power
spectrum inputs to train a long short-term memory
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recurrent neural network (RNN)-based lapse detector, which
demonstrated a mean performance of ϕ = 0.38 ± 0.05, AUC-
ROC = 0.84 ± 0.02, AUC-PR = 0.41 ± 0.08 (Davidson
et al 2007). The RNN approach was applied to the same
dataset described in this paper. Both the RNN approach and
the current linear approach used a time-resolution criterion of
1.0 s for detection of the lapse state. The results presented
in this paper demonstrate that a relatively simple linear
approach based upon spectral power is capable of achieving
a very similar level of performance to that of an RNN
approach. The linear approach has the added advantage of
being computationally less intensive than the RNN to train.
The comparable level of performance between the RNN and
the linear spectral power approach described in this work is
somewhat surprising and suggests that the linear detector has
superior parsimony. It also suggests that lapses involve, at
most, only a mild nonlinearity as otherwise one would expect
neural-network-based detectors and linear-nonlinear-feature
detectors to achieve higher performances if the solution was
substantially nonlinear (Bishop 1995).

The only other group to have made substantial inroads
into the detection of behavioural microsleeps from EEG is
that of Golz et al (Golz et al 2007, Sommer et al 2002, 2009).
They used a combination of EEG, EOG and video-based eye
measures to detect behavioural microsleeps from spectral and
nonlinear features in subjects during overnight sessions on
a driving simulator. Using a support vector machine, they
were able to classify correctly 98% of definitive microsleeps
from an equivalent set of definitive non-microsleeps (Sommer
et al 2009). This is an impressive achievement but needs to
be moderated by the classification only having been applied
to 15% of the overall dataset. That is, their system has a
demonstrable high sensitivity for clear microsleeps but with an
undetermined specificity. Notwithstanding, they were able to
show both a high sensitivity and specificity for the microsleep
state during the entire dataset when rated at 30 s intervals
(Sommer et al 2009). They also used a continuous version
of their classifier to estimate the binary microsleep/non-
microsleep state at a rate of 10 Hz. However, in contrast to the
techniques presented in the current paper and that of Davidson
et al (2007), they were unable to validate their classifier in the
detection of either the microsleep state (e.g. at 0.1 s or 1.0 s
intervals) or individual microsleep/lapse events. This aside,
by averaging the output of their continuous microsleep-state
classifier over 4 min epochs, they were able to estimate more
tonic levels of alertness/drowsiness (Sommer et al 2009).

In our detector, the advantage of creating multiple
models and the resulting increase in detector performance was
demonstrated. Using eight level-0 models and a meta-learner
resulted in a mean phi correlation of 0.39 for the SP detector,
whereas lumping all the features from seven subjects to create
a single model and validating the lumped model on the eighth
subject resulted in a mean phi of 0.31. The lumping of data
prior to model formation may result in the model being biased
towards certain subjects, such as those with the most lapses,
resulting in a loss of generalizability. Using a stacked approach
yields better performance as the level-0 models are adjusted
by the meta-learner according to how well they generalize

over the training set. It is expected that the mean detector
performance would increase if the size of the training set was
increased. However, this was not possible in this work as the
dataset was limited to eight subjects.

Our finding that constrained-LS weights gave no clear
improvement in detection performance over uniform weights
for the meta-learner was unexpected. Stacked generalization
was used to combine the model outputs because this was
expected to be the best method of combining the level-0
models by determining the optimal weights for the level-0
models using the training data. However, only a slight trend
in increased performance (in terms of mean phi) was observed
in lapse detectors based on SP features. In fact, nonlinear
feature-based lapse detectors with uniform weights showed
a trend towards slightly outperforming the constrained-LS
weighted meta-learner. A possible reason for the lack of
substantial improvement in detector performance with the use
of the stacked approach may be due to the level-0 models being
very similar to each other. It has also been suggested that one
must use dissimilar predictors to obtain the most improvement
in performance when using a stacked system (Breiman 1996).

Investigation of the features and channels that contributed
most to the SP-based lapse detector (highest performer of all
the detectors) revealed that the alpha band contributed the
most to the overall detection model. This is consistent with
previous research which has demonstrated correlations (albeit
relatively low) between amplitude changes in the alpha range
during or immediately after auditory lapses (Makeig and Jung
1996) and visual lapses (Cajochen et al 1999). A decrease in
alpha power, together with an increase in theta power, has also
been reported during EEG microsleeps (Harrison and Horne
1996, Valley and Broughton 1983). It is likely that a change
in alpha was ‘selected’ by our lapse detector as a useful cue
to determine the occurrence of lapses. Torsvall and Åkerstedt
(1988) noted that alpha power peaked during a ∼22 s period
preceding the onset of a ‘dozing off’ event during a visual
tracking task. However, the use of alpha band power as a
feature in a lapse detection system in a real-life task such
as driving is likely to be confounded by the fact that alpha
rhythm is suppressed during body movement (Salmelin and
Hari 1994). Eoh et al (2005) found a relationship between
EEG parameters β and (α + θ )/β and mental alertness level.
Jap et al (2011, 2009) also found evidence to support the (α +
θ )/β ratio providing a reliable estimate of fatigue as it yielded
larger amplitude differences than θ/β, θ/(α + β) and (α +
θ )/(α + β). The use of (α + θ )/β may have increased the
performance of our lapse detection system. Coherence in the
α-band may be another useful parameter to include in a future
spectral-based lapse detection system (Jap et al 2010).

As theta power was shown to have one of the highest
(albeit small) correlations with lapses in our previous paper
(Peiris et al 2006), and has also been associated with reduced
auditory alertness (Huang et al 2001, Jung et al 1997), driver
fatigue (Lal and Craig 2005) and EEG-microsleeps (Harrison
and Horne 1996, Priest et al 2001, Valley and Broughton
1983), it was surprising to find that theta power did not
contribute substantially to the overall spectral-power-based
lapse detector. This suggests that changes in theta power
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did not feature prominently in our dataset. Of all the features,
beta power contributed the least to the SP detector, contrasting
with Belyavin and Wright (1987), who found beta power to
be the most useful discriminator of worsening vigilance in a
visual vigilance and letter discrimination task. This apparent
discrepancy is probably due to beta power being correlated
with depth of drowsiness rather than behavioural microsleeps.

Cajochen et al (1999) reported that frontal delta+theta
EEG activity (1–7 Hz) increased with deteriorating
performance in sleep-deprived subjects, whereas Santamaria
and Chiappa (1987) reported an increase in centrofrontal
alpha, often concurrent with a decrease in occipital alpha, as
drowsiness increased. This contrasts with the current findings
in which there was an approximately equal contribution
towards the overall detection model from all EEG derivations,
indicating that there is no strong spatial pattern that could
be used to detect lapses (apart from derivation T6-O2 which
showed a marginally higher contribution). Again, the apparent
differences may be due to the focus of the aforementioned
studies being on depth of drowsiness rather than lapses.

A probable substantial contributor to the relatively low
detector performance is that the majority of lapses, being of
only a few seconds duration, were too brief for substantial
changes to develop in the EEG. This is consistent with the
EEGer being generally unable to detect visual changes in the
raw EEG during lapses on a psychomotor vigilance task (Peiris
et al 2005).

The tracking task in the current study was not one of
driving simulation, let alone on-road driving. Hence, it is
not possible to extrapolate the finding of a high rate of lapses
(Peiris et al 2006) nor the detection of such to real-life driving.
This is because a real driving task tends to be more stimulating
to the subject and, hence, is more likely to keep their attention
focused on the task. Furthermore, perhaps the most important
difference between off-road lab-based tasks, such as tracking
and driving simulation, and on-road driving is the disparity of
the consequences for lapsing. This aspect of lapsing could be
investigated further using an on-road driving test, such as done
by Papadelis et al (2007).

Future work will look more closely at video lapses which
do not contain flats spots, to determine whether there is any
substantial deterioration in performance, such as incoherent
tracking, or if a subject is able to track the target despite
appearing video-wise to be having a behavioural microsleep.
Conversely, instances where the subject appears to be alert
video-wise but shows poor or no tracking performance (i.e.
reflected either as flat spots or erratic tracking) need to be
investigated as lapses of sustained attention or of task-focused
attention to rule out cases of distraction.

Future studies will also include a larger and wider cross-
section of the population. Detection models formed from
a wider demographic base should generalize better to the
population. It will also be desirable to recruit a larger number
of subjects to increase the quantity and diversity of data for (i)
improved training of a more generalized detector, (ii) improved
estimation of the accuracy of detection and (iii) determination
of the effects of age, sex, sleep-deprivation etc on lapsing.
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