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A B S T R A C T   

Purpose: Individualised predictive models of cognitive decline require disease-monitoring markers that are 
repeatable. For wide-spread adoption, such markers also need to be reproducible at different locations. This 
study assessed the repeatability and reproducibility of MRI markers derived from a dementia protocol. 
Methods: Six participants were scanned at three different sites with a 3T MRI scanner. The protocol employed: T1- 
weighted (T1w) imaging, resting state functional MRI (rsfMRI), arterial spin labelling (ASL), diffusion-weighted 
imaging (DWI), T2-weighted fluid attenuation inversion recovery (FLAIR), T2-weighted (T2w) imaging, and 
susceptibility weighted imaging (SWI). Participants were scanned repeatedly, up to six times over a maximum 
period of five years. One participant was also scanned a further three times on sequential days on one scanner. 
Fifteen derived metrics were computed from the seven different modalities. 
Results: Reproducibility (coefficient of variation; CoV, across sites) was best for T1w derived grey matter, white 
matter and hippocampal volume (CoV < 1.5%), compared to rsfMRI and SWI derived metrics (CoV, 19% and 
21%). For a given metric, long-term repeatability (CoV across time) was comparable to reproducibility, with 
short-term repeatability considerably better. 
Conclusions: Reproducibility and repeatability were assessed for a suite of markers calculated from a dementia 
MRI protocol. In general, structural markers were less variable than functional MRI markers. Variability over 
time on the same scanner was comparable to variability measured across different scanners. Overall, the results 
support the viability of multi-site longitudinal studies for monitoring cognitive decline.   

1. Introduction 

People with mild cognitive impairment (MCI) [1] show age-related 
decline that is greater than that of their age-matched peers. A diag-
nosis of dementia is given when a significant loss of everyday cognitive 

function, unrelated to frailty, is identified. Approximately 50 million 
people are living with dementia worldwide, a number set to increase 
three-fold by 2050 [2]. Although MCI can be a precursor, not all people 
with MCI go on to develop dementia [3]. The reasons why some in-
dividuals progress to dementia and others do not is unresolved and 
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remains a topic of focussed research. Biomarkers are needed that 
accurately track cognitive decline and hold potential to predict which 
individuals will progress to dementia. 

Quantitative imaging biomarkers (QIBs) assist with diagnosis, 
disease-monitoring, and assessment of treatment and interventions. 
QIBs derived from magnetic resonance imaging (MRI) that are of in-
terest in dementia studies [4] include grey matter brain volumes derived 
from T1-weighted (T1w) imaging for tissue atrophy, arterial spin 
labelling (ASL) metrics for cerebral blood flow (hypo-perfusion/hypo- 
metabolism), diffusion weighted imaging (DWI) measures for white 
matter structure, resting state functional MRI (rsfMRI) for functional 
connectivity and T2w fluid attenuation inversion recovery (FLAIR) 
derived estimates of white matter hyperintensity (WMH) volume for 
small vessel disease. Additional, more clinically focused scans in a de-
mentia protocol often include T2-weighted (T2w) and susceptibility 
weighted imaging (SWI) to assess vascular health and other pathologies. 

Multicentre studies allow for larger, more representative cohorts to 
be recruited for research trials. However, inter-site measurement vari-
ability needs to be quantifiable to interpret pooled data. For QIBs to be 
adopted widely and incorporated into clinical practice, inter-site mea-
surement reliability needs to be established to determine confidence in 
diagnostic metrics. Knowledge of QIB variability over time due to 
measurement uncertainty is essential when monitoring longitudinal 
cognitive changes as a function of normal ageing, disease, or an inter-
vention. Without this crucial information, it cannot be determined 
whether subsequent changes in the QIB are due to underlying physio-
logical changes, or simply measurement variability. 

The Quantitative Imaging Biomarkers Alliance (QIBA) [5,6] defines 
reproducibility as variability due to measurements being collected under 
different conditions, e.g., at different sites with different hardware or 
processed with different software. Conversely repeatability refers to 
variability in a measurement collected under the same conditions mul-
tiple times. Several studies have examined the reproducibility and 
repeatability of individual, or single modality QIBs within the context of 
dementia [7–9]. However multiple QIBs in combination, akin to a 
“biomarker signature”, are likely to have more predictive power of 
cognitive decline than a single maker alone [10]. Accordingly, we 
wished to assess measurement variability in a suite of parameters that 
could be used for this purpose. We recruited “travelling heads” (THs), 
the same participants who travelled to imaging centres to be scanned at 
repeated time-points, enabling assessment of the reproducibility and 
repeatability of quantitative MRI (qMRI) markers for dementia. Each 
site was part of a multicentre, longitudinal study known as the Dementia 
Prevention Research Clinics. 

2. Materials and method 

2.1. Participants 

Six participants (3 female, 3 male) were recruited as THs. Their 
average age at commencement of the study was 38.5 years (range 
31.9–52.7). The study received ethical approval from the Health and 
Disability Ethics Committee and all participants provided informed 
written consent before taking part, per New Zealand National Ethical 
Standards. 

2.2. Data acquisition 

Imaging was performed at three different cities in New Zealand: 
Auckland, Christchurch, and Dunedin. Each site has a similar 3T MRI 
system (MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany). 
Different coils were used due to equipment availability at each site. In 
Auckland, data were collected using a manufacturer-supplied 32-channel 
radio frequency (RF) head coil. In Dunedin and Christchurch, a 
manufacturer-supplied 64-channel head and neck RF coil were used. All 
three systems have the same gradient sets of 45 mT/m peak amplitude 

with a slew rate of 200 mT/m/msec, have identical 1st and 2nd order shim 
coils, and all are actively shielded. All sites had the same software version 
installed at the time of the inter-site reproducibility data collection, but 
this changed over the period of repeatability measurements. 

Several steps were taken to harmonise data acquisition across all 
centres. At initiation of the study, the scan parameters were exported in 
a format that could be imported at each site directly (.exar files), to 
minimise error due to user input. The same stimuli presentations for 
rsfMRI and ASL imaging were sent to each site and consisted of a fixation 
cross and instructions to keep eyes closed respectively. The same set of 
briefing instructions for participants were used at all sites. A standard 
operating procedure for scanner users on how to acquire the data (e.g., 
landmarking, setting angle of acquisition, shim adjustments) was also 
adopted by each site. 

TH data collection commenced when the Dementia Prevention 
Research Clinics opened and when participant scanning began at each 
site: Auckland in March 2016, Dunedin in July 2017, and Christchurch 
in December 2017. Data to measure reproducibility were acquired in the 
six THs at the three different sites as close-in-time as possible; the time 
between scans was on average 10 days (range 5–26). To measure long- 
term repeatability, data from the Auckland site were chosen as it had the 
longest data collection period and the greatest number of scans. In 
Auckland, repeat data were collected in 5 participants; one of the initial 
6 participants recruited was only scanned once due to family reasons. 
Three participants were scanned over a period of 5 years, with 5 to 6 
repeat scans per participant. Due to travel restrictions, two participants 
were scanned over shorter periods (1 and 3 years). To assess repeat-
ability over a shorter time frame, one participant was scanned in 
Auckland on 3 consecutive afternoons. 

The THs were scanned with the same protocol used for clinic par-
ticipants. This consisted of: T1w, rsfMRI, a B0 field map (for distortion 
correction of the rsfMRI), ASL, multi-shell DWI, FLAIR, SWI and T2w 
imaging. Imaging parameters are outlined below. 

2.3. Image acquisition 

A T1-weighted magnetisation-prepared rapid gradient-echo 
(MPRAGE) sequence, repetition time (TR) / echo time (TE) / inversion 
time (TI) = 2000/2.85/880 ms, flip angle = 8 degrees, receiver band-
width (rBw) = 240 Hz/pixel, voxel size = 1.0 × 1.0 × 1.0 mm, was 
collected in a sagittal orientation, with whole-brain coverage, field of 
view (FoV) = 256 × 256 × 208 mm and GRAPPA acceleration factor =
2, yielding a total scan duration of 4 min 56 s. 

Functional blood oxygen level dependant (BOLD) rsfMRI images 
were collected using a gradient-echo, echo-planar imaging (EPI) 
simultaneous multi-slice (SMS) sequence [11] in a transverse orienta-
tion, approximately aligned with a line joining the anterior and posterior 
commissures (ACPC). The acquired voxel size was 2.4 × 2.4 × 2.4 mm, 
FoV = 210 × 210 × 154 mm, TR/TE = 735/39.0 ms, flip angle = 51 
degrees, rBw = 2030 Hz/pixel, multi-band (MB) acceleration factor = 8, 
and 490 measurements, collected for a period of 6 min 10 s. A field map 
was collected in the same orientation and FoV as the BOLD scan, with a 
voxel size of 3.3 × 3.3 × 2.4 mm, TR = 626 ms and two TEs of 4.92 ms 
and 7.38 ms. Magnitude and phase data were reconstructed. 

Whole brain ASL images were acquired using a 3D gradient and spin 
echo (GRASE) readout and pseudo-continuous labelling (pCASL) pro-
totype sequence, with background suppression, labelling duration =
1800 ms, and single post-labelling delay = 1800 ms [12]. The acquired 
voxel size was 3 × 3 × 4 mm, FoV = 192 × 192 × 168 mm, TR/TE =
5000/14.4 ms, GRAPPA = 2, segments = 6, EPI factor = 17, Turbo 
factor = 14, rBw = 2694 Hz/pixel, with each control-label pair repeated 
eight times and an M0 scan collected in-line (with the sequence default 
TR of 4 s) for a total scan duration of 8 min 31 s. In 2020, an alternative 
sequence [13] was adopted at all sites. Parameters were matched as 
closely as possible to the previous implementation, but with the 
following necessary deviations, FoV = 194 × 194 × 168 mm, TE = 14.8 
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ms, no GRAPPA acceleration, partial Fourier in the phase encode di-
rection = 6/8, EPI factor = 18 and Turbo factor = 21. An M0 image was 
collected separately. 

DWI data were acquired with an echo-planar spin-echo SMS 
sequence [11] with a MB factor = 3. The voxel size was 2.0 × 2.0 × 2.0 
mm, FoV = 210 × 210 × 144 mm, TR/TE = 3600/92 ms, excitation flip 
angle = 78 degrees and refocusing flip angle = 160 degrees. Diffusion 
was encoded using a monopolar scheme in a total of 100 non-collinear 
directions: 50 volumes b = 1000 s/mm2 volumes, 50 b = 2000 s/mm2 

volumes, and six interleaved volumes without diffusion weighting (b =
0 s/mm2). Three additional b = 0 s/mm2 volumes were collected with 
the reverse (posterior-anterior) phase encoding direction for distortion 
correction. The DWI acquisition time was 7 min 44 s in total. Both the 
DWI and rsfMRI and acquisition were harmonised with the UK Biobank 
protocol [14]. 

FLAIR images were collected with a 3D T2-w SPACE sequence 
(variable flip angle), acquired sagittally with TR/TE/TI = 5000/393/ 
1800 ms, FoV = 256 × 256 × 202 mm; voxel size = 1.0 × 1.0 × 1.1 mm, 
rBw = 781 Hz/pixel, GRAPPA = 2, and partial Fourier in the slice di-
rection, making a scan duration of 4 min 7 s. 

A T2w scan was collected with a BLADE (radial k-space trajectory) 
sequence acquired in the same ACPC orientation as the rsfMRI, with TR/ 
TE = 5500/117 ms, FoV = 230 × 230 × 140 mm; voxel size = 0.7 × 0.7 
× 3.0 mm, 36 slices, rBw = 120 Hz/pixel, GRAPPA = 2, BLADE coverage 
of 91%, and two concatenations, making a scan duration of 2 min 3 s. 

Lastly, SWI data were collected with a 3D gradient echo sequence, in 
the same ACPC orientation and with the same voxel size as the T2w scan 
and FoV = 230 × 201 × 144 mm. A TR/TE = 29/20 ms, flip angle of 15, 
rBw = 120 Hz/pixel and GRAPPA = 2 were used. Total scan time was 2 
min 46 s. Magnitude, phase, and SWI data were reconstructed. 

Scan parameters were identical at all sites except for the following 
minor deviations: in Auckland the TE of the T1-weighted MPRAGE scan 
was 2.83 ms (vs. 2.85 ms in Dunedin and Christchurch); diffusion di-
rections had to be modified slightly in Dunedin for reasons described 
here: https://www.fmrib.ox.ac.uk/ukbiobank/protocol/UKBB_Portin 
g_Diffusion_Protocol_v2.pdf. 

2.4. Image processing 

Images were processed centrally, with the same software used for all 
data sets. DICOM images were converted to NifTi format, following 
Brain Imaging Data Structure (BIDS) conventions (http://bids.neuroim 
aging.io/) specified at the time of analysis. 

The T1w images were processed using the default settings in the 
Computational Anatomy Toolbox (CAT12 v12.7 [15]) processing pipe-
line, run within the Statistical Parametric Mapping (SPM12 v7771) 
software package [16] using MATLAB (R2019b). A spatial-adaptive non- 
local means denoising filter was applied to the images [17], followed by 
internal resampling, affine pre-processing, initial bias correction, and 
affine registration. The initial standard SPM unified segmentation [18] 
was then applied using tissue probability maps from the International 
Consortium for Brain space template [19]. Skull stripping, regional 
parcellation and spatial normalisation then took place, followed by local 
intensity correction and a final adaptive maximum a posteriori seg-
mentation [20] into total grey matter (GM), white matter (WM) and 
cerebrospinal fluid (CSF), utilising a Markov Random Field approach. 
The proportion of each tissue type in every voxel was estimated by 
performing a partial volume estimation [21], generating a tissue prob-
ability map in native space. Total GM (cortical and subcortical) and WM 
volumes were derived for each subject and regional volumes, specif-
ically the left and right hippocampus given evidence of atrophy in MCI 
[22,23] were estimated using the Automated Anatomical Labelling 
version 3 atlas [24,25]. An average of the left and right hippocampal 
volumes is reported. 

The rsfMRI images were pre-processed with fmriprep v20.2.1 stable 
[26], a Nipype [27] based tool. Briefly, a single-band reference volume 

(SBRef) was co-registered to the T1w image, and motion parameters 
were estimated for each subsequent volume relative to the reference 
volume. Slice-timing correction, normalization to MNI space, and spatial 
smoothing (6 mm FWHM) were then performed. fMRI images were 
denoised using ICA-AROMA [28]. The following confounds (estimated 
during fmriprep’s pipeline) were then regressed out of each participant’s 
data using Denoiser (https://github.com/arielletambini/denoiser): six 
motion parameters, the top five aCompCor regressors, outlier detection 
regressors (framewise displacement, rmsd, dvars, standardised dvars), 
and discrete cosine-basis regressors for scanner signal drifts. Finally, 
time-series were band-pass filtered (0.01-0.1 Hz) to isolate low- 
frequency fluctuations in the BOLD signal. 

A set of 48 regions of interest (ROIs) representing the four largest 
functional networks specified in [29] (default mode, DMN; dorsal 
attention, DAN; ventral attention, VAN; and frontoparietal control, 
FPCN, networks) were used for rsfMRI analyses. For each ROI, activity 
within a sphere (radius = 2 mm) around a central coordinate was 
averaged to generate a time-series. The time-series of all ROIs were then 
correlated with each other to generate correlation matrices for each 
scan. Correlation coefficients between all nodes within a network 
(excluding self-connections) were averaged to provide an estimate of 
within-network connectivity; for conciseness, VAN and FPCN results are 
provided as supplementary material. We also computed modularity, a 
graph-theoretical measure that captures the extent to which networks 
can be segregated into smaller communities [30] that has been found to 
be increased in MCI and dementia [31]. The modularity metric (Q) was 
estimated across all entire matrices (i.e., including all networks) using 
the community_louvain function in the Brain Connectivity Toolbox [32]. 

ASL images were processed using toolboxes distributed with FSL 
(version 5.0.9). First, fsl_anat was applied to the T1w image for tissue 
segmentation, followed by BASIL (Bayesian Inference for Arterial Spin 
Labelling MRI) [33] to compute motion corrected, partial volume cor-
rected (PVC) [34] CBF maps in native space. Magnetisation of arterial 
blood was computed voxel-wise using the acquired M0 image and cor-
rected for T1 relaxation [12]. Calibrated perfusion values were calcu-
lated assuming T1 blood at 3T = 1.65 s, fixed bolus duration = 1.8 s, and 
single compartment fitting [12]. For the first ASL sequence, an 
experimentally-determined labelling efficiency of 60% was used [35]. 
For the second ASL sequence variant, the labelling efficiency was 
assumed to be 85% [12]. The average PVC CBF in GM and WM masks 
were output. 

DWI data were pre-processed using MRtrix3 [36], FMRIB Software 
Library (FSL) [37], and Advanced Normalisation Tools (ANTs) [38] to 
perform the following steps: 1) denoising [39–41], 2) Gibbs ringing 
correction [42], 3) eddy current distortion and motion correction 
[43,44], 4) brain mask estimation [45], and 5) bias field correction [46]. 
Next, response functions were estimated for GM, WM, and CSF [47,48], 
and the diffusion data and brain masks were upsampled to 1.25 mm 
isotropic voxel size [49]. Fibre orientation distributions (FOD) were 
estimated using a multi-tissue constrained spherical deconvolution 
(CSD) [50], a higher-order diffusion model which aims to account for 
multiple fibre populations (or crossing fibres) in each voxel or ‘fixel’ 
[51]. Outputs were joint bias field corrected and intensity normalised, 
while allowing for multi-tissue components [52]. 

A white matter FOD study template was generated [53] from 18 
scans (6 participants at 3 sites). Each FOD image (for both reproduc-
ibility and repeatability analysis) was registered to the template as 
previously described [53,54]. Further processing was performed as 
recommended [36]: a WM fixel mask was generated with peak threshold 
value of 0.06; whole-brain fibre tractography was performed by gener-
ating 20 million streamlines, then subsequently filtered to two million 
streamlines via the spherical-deconvolution informed filtering of trac-
tograms (SIFT) [55] algorithm. Data was smoothed to achieve 
connectivity-based fixel enhancement [56]. Lastly, fibre density (FD) 
and fibre-bundle cross-section (FC) were estimated. Using this fixel- 
based approach [51] (implemented in MRtrix3 [36]), FD represents 
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the fraction of the intra-axonal compartment within a voxel, while FC 
aims to account for more macroscopic properties, like the number of 
voxels the WM fibre bundle occupies. Since WM pathology can result 
from both microscopic changes in FD and macroscopic changes in FC (e. 
g. due to atrophy in dementia), a combined measure of fibre density and 
cross-section (FDC) may give a more comprehensive measure of the 
ability of the tract to relay information [51]. Therefore, FDC was 
extracted for each participant, while results for FD and FC separately are 
provided as supplementary material. 

Lesion probability maps of WMH were generated automatically from 
the T2-FLAIR image by the lesion prediction algorithm (LPA) [57] as 
implemented in the LST toolbox version 3.0 (https://www.statistical-mo 
delling.de/lst.html) for SPM. The lesion probability maps were thresh-
olded using default settings to extract WMH lesion volumes for each 
scan. Since the middle-aged TH participants were likely to have a min-
imal/undetectable lesion load, overall FLAIR image contrast was also 
assessed. Both GM-WM and GM-CSF contrasts were assessed, with the 
GM-CSF contrast as a measure of CSF signal suppression. The partici-
pant’s T1w image was input as a reference image to LPA, resulting in a 
FLAIR image, bias corrected in the participant’s T1w space. GM, WM, 
and CSF whole brain signal intensity (SI) were extracted using the 
CAT12 tissue probability map previously described. For all analyses, 
image contrast between two tissue types was computed using the 
Michelson definition of image contrast = (SI1 - SI2)/(SI1 + SI2) [58]. 
WMH lesion volume results are presented in the supplement. 

The same contrast measures of GM-WM and GM-CSF were used for 
assessing the T2w data. Signal intensities were extracted from ROIs 
drawn manually on DICOM format images in the caudate, frontal WM, 
and anterior horns of the lateral ventricles for GM, WM, and CSF ROIs, 
respectively (see supplementary Fig. S1 for example ROI placements). 
Similar to the analysis of Voelker et al., [58], GM-WM and blood vessel 
contrasts were used for SWI derived metrics. SIs were extracted from 
ROIs manually drawn on the scanner generated SWI DICOM images in 
the globus pallidum, frontal WM, basal vein and adjacent tissue for GM, 
WM, vessel, and adjacent to vessel ROIs. For all the manually drawn 
ROIs, left and right SIs were averaged before computing contrast. 

2.5. Data analysis 

A total of 15 metrics were computed from the 7 different modalities: 
GM volume, WM volume, hippocampal (HC) volume, Q (modularity), 
DMN connectivity, DAN connectivity, GM perfusion, WM perfusion, 
fibre density CS, FLAIR GM-WM contrast, FLAIR GM-CSF contrast, T2w 
GM-WM contrast, T2w GM-CSF contrast, SWI GM-WM contrast, and SWI 
vessel contrast. Values computed for each participant were visualised 
using R Studio (1.3.1093), with already available plotting packages and 
code adapted from [59]. Reproducibility was defined as the mean of the 
within-participant coefficient of variation (CoV) of a metric across sites 
(at a single time-point). The metric average for all participants at one 
site was calculated and displayed to compare group mean values be-
tween scanners. Lines were used to connect individual participant re-
sults to examine within-participant variability (since site group means 
could be similar, even if within-participant results are highly variable). 

Repeatability was defined as the mean of within-participant CoV of a 
metric across time (at a single site). To visualise repeatability, results for 
participants scanned at a single site were plotted, normalised to their 
first scan result, to show relative change from baseline. A linear model 
regression line was fit to the data to observe any obvious trends in the 
data over time. The 95% confidence interval was also plotted to visualise 
variability in the longitudinal data. Highly repeatable data would have a 
zero slope and narrow confidence interval. Further, while all repeated 
data was graphed, short-term repeatability was calculated separately, 
with data from the three scans collected on consecutive days. 

3. Results 

From a total of 266 scans (38 scan sessions × 7 modalities), 4 scans 
were missing/unusable. One baseline ASL scan was excluded due to poor 
labelling, evident by very low perfusion-weighted signal. For this 
participant, repeatability ASL measures were normalised to their second 
ASL scan. For another participant, the FLAIR, T2w, and SWI scans were 
not collected due to limited scan time availability. Representative im-
ages from a single participant scanned at the three different sites within 
seven days are shown in Fig. 1. Overall, images show similar signal 
distribution, contrast, and lack of obvious artefacts. As expected, WMH 
volumes in the THs were minimal (<0.35 cm3), and therefore whole 
brain FLAIR GM-WM and GM-CSF contrast results were analysed. 

Fig. 2 shows the data used for the assessment of reproducibility. 
Overall, group means for most metrics appear to be in good agreement 
between sites. As an example, group mean HC volumes were 4.40, 4.38 
and 4.44 cm3 for Auckland, Christchurch, and Dunedin respectively. 
Considering individual participant data, inter-site variability would be 
low compared to inter-subject variation if lines connecting the same 
participants data at each site do not cross, which appears to be the case 
for GM, WM, and HC volume. Conversely, the rsfMRI metrics, (Q, DMN, 
and DAN connectivity) and ASL metrics (grey and white matter perfu-
sion) have crossing lines, suggesting inter-site variability is greater than 
inter-subject variability. Group means for GM perfusion were consistent 
across the sites (60 ml/min/100 g to 0 d.p.), although individual GM 
CBF measurement is more variable in Auckland than Dunedin. For the 
DWI metric, while the mean appears to be highly reproducible (0.29, 
0.29 and 0.28 for Auckland, Christchurch, and Dunedin respectively), 
there is a greater range of fibre density CS values measured in Dunedin 
compared to Auckland. The FLAIR GM-WM contrast also appears 
reproducible, with one participant having greater GM-WM contrast at all 
sites. Regarding the T2w metrics, the mean of data from the Christ-
church and Dunedin sites is more similar than that from the Auckland 
site, with higher GM-WM contrast (0.25 and 0.26 in Christchurch and 
Dunedin vs. 0.22 in Auckland) and lower and GM-CSF contrast (0.50 and 
0.48 in Christchurch and Dunedin vs. 0.56 in Auckland). This trend is 
also evident when looking at individual participants’ data points. SWI 
venous contrast is higher in one participant but is also different across 
sites for that participant. 

Repeated scan metrics (including short-term repeatability) are 
plotted relative to baseline values in Fig. 3. Volumetric measures derived 
from T1w images are highly repeatable, as indicated by the flat 
regression lines and very narrow confidence intervals. Much larger 
confidence intervals are seen for the rsfMRI metrics. For example, for 
DMN connectivity for two participants in particular (blue and pink data 
points); their repeated scan results are similar to each other but over 
50% different to their baseline scan. GM perfusion changes by up to 25% 
in the same participant, but there is a trend for consistent CBF mea-
surement (indicated by a model slope close to zero). WM perfusion on 
the other hand is more variable and there appears to be a trend for 
increasing WM CBF over time. Fibre density CS also appears highly 
repeatable, evidenced by consistent values over time and very narrow 
confidence intervals. For the clinical scan contrast measures, SWI image 
contrast is the most variable, with large relative differences over time of 
approximately 50% for some participants. 

The averages of individual participants’ CoV across sites, over 
several years, and over three days, representing a measure of repro-
ducibility and long and short-term repeatability respectively, are sum-
marised in Table 1, along with the mean and standard deviation for each 
metric. For CoV, lower values demonstrate a more consistent measure-
ment and higher values are more variable. Generally, reproducibility 
was comparable to long-term repeatability, and short-term repeatability 
was better than long-term repeatability (as indicated by lower CoV 
values; e.g., GM volume average CoVs of 1.3, 1.2, and 0.1% for repro-
ducibility, long-term and short-term repeatability, respectively). As 
suggested by data presented in Figs. 2 and 3, rsfMRI, ASL, and SWI 
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metrics were more variable across sites and over time than the other 
metrics (as evidenced by higher average CoVs), with SWI and rsfMRI 
repeatability CoVs as high as 25%. 

4. Discussion 

Overall, we found that 15 QIBs derived from MRI modalities typi-
cally found in a dementia imaging protocol [4], were comparable across 
all sites participating in our Dementia Prevention Research Clinics. 
Generally, reproducibility of metrics derived from brain structure (e.g., 
tissue volume) was better than those measuring physiological brain 
processes (e.g., resting state connectivity and perfusion). For a given 
metric, reproducibility CoV was of similar magnitude to long-term 
repeatability CoV. This result suggests that between-site variability 
was comparable to variability in repeat scanning over several years; the 
length of time that may be examined in longitudinal studies on MCI. 
Short-term repeatability CoV (measured over 3 days) was considerably 
better than long-term repeatability (measured over 5 years). 

Different levels of reproducibility and repeatability among MRI mo-
dalities have important implications for the interpretation of results. Our 

structural MRI metrics showed excellent reproducibility and repeatability, 
consistent with previous work [60], with CoVs of < 1.5% for GM, WM and 
HC volume. The CoV for GM perfusion (11% between sites and 13% over 
five years) are similar to those reported in the literature of 5–13% for GM 
regions [61,62]. This is particularly encouraging, especially given a 
sequence variant was required near the end of the long-term repeatability 
study. Also encouraging is the short-term repeatability of GM perfusion 
(CoV = 2.7%), with results overall suggesting consistent acquisition with 
the current pCASL implementation. 

While DTI reliability has previously been shown to exhibit good 
test–retest reliability and repeatability [9,63,64], variability associated 
with newer alternative metrics e.g. fixel based analysis [51] requires 
further investigation. Recent work demonstrated that a three-tissue CSD 
technique (as used in this work) provided reliable and stable estimates of 
tissue microstructure composition, up to 3 months longitudinally in a 
control population (ICCs > 0.8) [65]. Our work builds on these results, 
measuring downstream metrics from the pipeline, fibre density cross 
section. We found FDCS showed only slightly higher reproducibility and 
repeatability CoVs (2–4%) than T1w-volumetric based metrics; lending 
confidence to their application in the investigation of MCI and dementia. 

Fig. 1. Representative data for a single participant 
collected at three different sites within seven days 
(columns 1 to 3) and a list of the 15 derived metrics 
(column 4). From the top, row 1 shows the acquired 
T1w MPRAGE scan in participant’s native space, row 
2 shows DMN connectivity maps (precuneus seed) 
processed in MNI template space, row 3 shows 
calculated CBF maps in native space, row 4 shows 
white matter FOD images in study template space, 
row 5 shows acquired FLAIR images, row 6 shows the 
acquired T2w images, and row 7 the SWI images. An 
oil capsule affixed to the left side of the head is seen in 
some images as an hyperintense circle on the right 
side of the head (images are presented in radiological 
orientation). Abbreviations: ASL – arterial spin label-
ling, CS – cross section, CBF – cerebral blood flow, 
CSF – cerebrospinal fluid, DAN – dorsal attention 
network, DMN – default mode network, DWI – diffu-
sion weighted imaging, FLAIR – fluid attenuation 
inversion recovery, FOD – fibre orientation density, 
GM – grey matter, HC – hippocampal, MNI - Montreal 
Neurological Institute, rsfMRI – resting state func-
tional magnetic resonance imaging, SWI – suscepti-
bility weighted imaging, T1w – T1-weighted, T2w – 
T2-weighted, WM – white matter.   
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The result that reproducibility (inter-site variation) and long-term 
repeatability (within-site variation) were similar in magnitude for a 
given metric was somewhat surprising. One would expect data collected 
under near identical conditions (i.e., on the same scanner) to be less var-
iable than data collected on different scanners. There are, however, several 
factors that might explain this result. First, even when closely matching 
sequence parameters between vendors [66], some differences remain. The 
data we present, although collected at three different sites, were acquired 
on MRI scanners of the same model, from a single manufacturer, with the 
same operating system (OS) software version at the time of reproducibility 

scanning. This meant that the same versions of pulse sequences (including 
those supplied as standard, prototype sequences from the vendor, and 
“research” sequences developed by other centres) were available at each 
site. Therefore, sequence parameters could be better matched across sites 
in our study than in multi-vendor studies, thus improving reproducibility. 
Second, although there were some hardware differences between the sites, 
these were unlikely to impact our metrics of interest. Specifically, the 64- 
channel coil in Christchurch and Dunedin compared to the 32-channel 
head coil in Auckland is likely to have better SNR of the infratentorial 
brain due to greater coil coverage in this region and may be the reason for 

Fig. 2. Reproducibility of metrics of interest measured at three different sites. Blue circles represent values measured in individual Travelling Heads at each site and 
lines connect the same participant. Black thick line is the mean value for all subjects at that site. Abbreviations: Auck – Auckland, CS – cross section, CSF – cere-
brospinal fluid, Chch – Christchurch, Dun – Dunedin, DAN – dorsal attention network, DMN – default mode network, FLAIR – fluid attenuation inversion recovery, 
GM – grey matter, HC – hippocampal, SWI – susceptibility weighted imaging, WM – white matter. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

C.A. Morgan et al.                                                                                                                                                                                                                              



Physica Medica 101 (2022) 8–17

14

more consistent T2w contrast at the two sites compared to Auckland. 
However, all our metrics of interest are in the supratentorial brain, and 
other QIBs investigated do not appear to have a step change at the two 64- 
channel coil sites. One reason for the absence of a step change could be 
that, although it has a greater total number of RF receive coils, the 64- 
channel coil has these elements distributed around the head and neck, 
and is likely to have a comparable number of coils around the head to the 
32-channel head only coil used in Auckland. Given the aforementioned 
factors, our reproducibility results are likely to be better than those in 
other studies that measured reproducibility across scanners from multiple 
vendors. Minimising measurement variability due to differing hardware 
configurations is an important step in the process of validating QIBs [67], 
and our results indicate that our efforts in doing so have been successful. 

The overarching aim of the Dementia Prevention Research Clinics is 
to find biomarkers, or combinations thereof, that predict the develop-
ment of dementia. Given that the process of cognitive decline is likely to 
occur over several years, the long-term stability of QIBs needs to be 
assessed. We scanned the THs repeatedly over a period of up to five years 
at the Auckland site to assess long-term repeatability. Strictly speaking, 
repeatability is measured under identical conditions [4], but over five 
years there are factors beyond our control that may cause measurements 
to deviate from this ideal scenario. For instance, required updates to 
operating system OS software and sequences is one such factor. 
Although an OS update was implemented at the end of 2017 in Auck-
land, our data do not show any obvious step changes in any of the QIBs 
collected after this time points (see Fig. 3). There were several deviations 

Fig. 3. Repeatability of metrics of interest measured at one site (Auckland). Circles represent relative values compared to baseline, measured in individual THs. 
Colours represent each participant. Grey lines indicate regression lines and shaded areas are 95% confidence intervals. Abbreviations: CS – cross section, CSF – 
cerebrospinal fluid, DAN – dorsal attention network, DMN – default mode network, FLAIR – fluid attenuation inversion recovery, GM – grey matter, HC – hippo-
campal SWI – susceptibility weighted imaging, WM – white matter. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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in the ASL pulse sequence over the period of data collection. Although 
updates to a prototype 3D pCASL GRASE sequence were provided in late 
2017 and 2018, generally settings used at baseline could still be reim-
plemented. In early 2020, however, a switch to an alternative to 3D 
pCASL GRASE [13] sequence was required. The GM-CBF results 
collected with the new variant look consistent with those collected be-
forehand, but WM-CBF does appear to be higher. That WM-CBF was 
affected but GM-CBF was not is likely because WM perfusion is 
considerably lower than GM, yielding lower perfusion weighted signal 
that may, in turn, lead to noisier estimates of CBF. CBF is scaled by 
labelling efficiency which will also vary between pulse sequences [35]. 
Ideally, stable versions of sequences should be used in longitudinal 
clinical studies, however, there is an ongoing tension between stability 
of measurement and rapid pace of progress in the field. Thus, in order to 
leverage the current best-practice in terms of ASL acquisition protocol (i. 
e. 3D pCASL) [12] we opted to use development versions. 

Of course, another deviation from identical conditions is that the 
brains of the THs also inevitably age and thus may change over the 
period of scanning. Our travelling heads had a mean age of approxi-
mately 40 years at the start of the study. It is therefore unlikely that they 
underwent potentially pathological declines (e.g. from undiagnosed 
MCIs) over a five year period and that any age-related changes in the 
QIBs should be minimal [68,69]. The younger age of our THs compared 
to the target cohort of the Clinics (55+ years) means that we are better 
able to isolate the true repeatability in metrics from underlying age- 
related brain changes. It should be noted however, that a disadvan-
tage in studying this younger age group is that volume of WMHs, a QIB 
widely studied in the context of normal and pathological aging, was very 
low (0 to 0.3 cm3) compared to approximately 5 cm3 in cognitively- 
normally 60–64 year olds [70], and over 10 cm3 in our own cohort of 

probable AD participants (preliminary unpublished data). 
Taken together, although minimal, there were nevertheless some 

minor OS software and sequence variations, and the potential for brain 
changes related to aging over the study period. Therefore, it is unsur-
prising that long-term repeatability (up to five years) was considerably 
poorer than short-term repeatability (over three days). These findings 
emphasise the need to minimise changes to software and sequences 
during longitudinal studies, particularly when collecting ‘noisier’ QIBs 
(e.g., DMN-connectivity), and to quantify and account for these varia-
tions in subsequent analyses where possible. 

It should be noted that in order to be ‘closer’ to the clinic and un-
derstand the variability in the metrics of interest to researchers or cli-
nicians, we compared endpoint parameters of interest (e.g. DMN 
correlation coefficients) rather than raw data (e.g. temporal signal to 
noise ratio of the BOLD-weighted time series). Arguably this is a strength 
of this study, and to this end, we selected analytic approaches and 
software packages that are commonly used in the field. However, it 
remains possible that other software packages may produce output 
metrics that are more (or less) sensitive to variation of the raw data. This 
question sits outside of the scope of the present study, but we note that 
there are multiple ongoing investigations on this topic [60,71]. 

The usefulness of any given QIB in monitoring disease processes 
depends both on its measurement error and the magnitude of the 
disease-related change. Here, we provide a quantitative estimate of 
reproducibility and repeatability, encompassing systematic error and 
random error. This approach allows informative comparison to potential 
disease effect sizes. Measures with excellent between- and within-site 
stability (e.g., GM and HC volumes) facilitate the detection of even 
subtle disease-related changes. Our reported long-term repeatability of 
hippocampal volume CoV of 1.3% suggests that annualised rates of 

Table 1 
Summary of reproducibility and long and short-term repeatability results for metrics of interest. Horizontal line groups metrics from the same modality. Mean is 
reported to 3 significant figures and CoV reported to 2 decimal places. Reproducibility results: Mean results are the average of the within-participant mean of a metric 
across sites (at a single time-point). S.D. results are the average of the within-participant standard deviation of a metric across sites (at a single time-point). CoV results 
are the average of the within-participant coefficient of variation of a metric across sites (at a single time-point). Repeatability (long term) results: Mean results are 
the average of within-participant mean of a metric across time (over 5 years, at a single site). S.D. results are the average of within-participant standard deviation of a 
metric across time (over 5 years, at a single site). CoV results are the average of within-participant coefficient of variation of a metric across time (over 5 years, at a 
single site). Repeatability (short term) results: Mean results are the average of within-participant mean of a metric across time (over 3 days, at a single site). S.D. 
results are the average of within-participant standard deviation of a metric across time (over 3 days, at a single site). CoV results are the average of within-participant 
coefficient of variation of a metric across time (over 3 days, at a single site). Abbreviations: CS – cross section, CSF – cerebrospinal fluid, DAN – dorsal attention 
network, DMN – default mode network, FLAIR – fluid attenuation inversion recovery, GM – grey matter, HC – hippocampal, SWI – susceptibility weighted imaging, 
WM – white matter.   

Reproducibility Repeatability 
(Long term) 

Repeatability 
(Short term) 

Total data points 18 23 3 
Total participants 6 5 1 
Total data points per participant 3 sites 3–6 time points 3 timepoints  

(over 3 days)  

Across participant average Mean S.D. CoV (%) Mean S.D. CoV (%) Mean S.D. CoV (%) 

GM volume (cm3) 685 9  1.3 698 8  1.2 744 1  0.1 
WM volume (cm3) 559 7  1.2 570 5  0.9 590 4  0.7 
HC volume (cm3) 4.41 0.06  1.3 4.36 0.06  1.3 4.76 0.03  0.7 

Q (modularity) (a.u.) 0.319 0.061  19.3 0.314 0.069  23.5 0.306 0.011  3.7 
DMN connectivity (a.u.) 0.335 0.044  14.4 0.335 0.072  21.9 0.285 0.028  9.7 
DAN connectivity (a.u.) 0.355 0.061  16.7 0.373 0.082  23.5 0.290 0.030  10.2 

GM perfusion (ml/min/100 g) 59.8 6.7  11.1 59.7 7.9  12.7 71.6 1.9  2.7 
WM perfusion (ml/min/100 g) 34.8 5.3  14.9 36.9 8.4  21.8 52.7 2.3  4.4 

Fibre density CS (a.u.) 0.285 0.010  3.6 0.293 0.005  1.9 0.313 0.007  2.3 

FLAIR GM-WM contrast (a.u.) 0.105 0.003  3.1 0.108 0.003  2.6 0.092 0.001  0.7 
FLAIR GM-CSF contrast (a.u.) 0.252 0.010  4.1 0.240 0.009  3.7 0.299 0.004  1.7 

T2 GM-WM contrast (a.u.) 0.242 0.021  8.7 0.214 0.014  6.7 0.195 0.027  13.7 
T2 GM-CSF contrast (a.u.) 0.512 0.059  11.6 0.570 0.058  10.3 0.560 0.050  8.8 

SWI GM-WM contrast (a.u.) 0.135 0.020  16.4 0.134 0.030  25.4 0.189 0.005  2.7 
SWI vessel contrast (a.u.) 0.178 0.037  20.7 0.194 0.046  25.5 0.200 0.077  38.7  
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hippocampal atrophy in AD of 4.7% (3.3% greater than control subjects) 
[72] should be reliably detectable. Using the same ASL acquisition and 
processing as in the present study, we report reduced perfusion (PVC 
CBF in GM) of approximately 50 ± 15 ml/min/100 g (group mean ± S. 
D) in a probable Alzheimer’s disease group compared to 75 ± 20 ml/ 
min/100 g in a cognitively normal group [73]. For the THs, we found the 
average of the within-participant standard deviation of PVC CBF in GM, 
across either site or across timepoint, to be < 8 ml/min/100 g (see 
supplementary Table 2). This observation provides confidence in 
measuring changes due to perfusion in Alzheimer’s disease, since the 
magnitude of the TH variability—both between sites and over time—is 
small compared to the observed group difference. Recent work suggests 
that rsfMRI metrics exhibit low test–retest reliability (meta-analysis ICC 
= 0.29) [74]. Our findings of relatively high within-subject CoV values 
for modularity, DMN connectivity, and DAN connectivity are consistent 
with this finding. While still informative, this finding suggests that effect 
sizes must be large and/or more subjects are needed to detect differences 
in rsfMRI metrics; new advanced multimodal methods are also proposed 
to address this issue [75]. 

5. Conclusion 

In this work, we investigated the reproducibility (inter-site) and 
repeatability (intra-site, over both short (days) and long (years) time 
periods) of 15 quantitative MRI metrics in the context of an ongoing 
longitudinal investigation of MCI and dementia. Structural metrics 
exhibited excellent reproducibility across three sites and repeatability 
over both days and up to five years. Resting state fMRI showed poorer 
reproducibility and repeatability, while perfusion MRI showed inter-
mediate levels. Variability over time on the same scanner was compa-
rable to variability measured on different scanners, and generally short 
term repeatably was much better than long term repeatability. This 
work provides both confidence in the robustness of many MRI-based 
metrics and highlights areas for improvement. 
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