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ABSTRACT: Cognitive impairment is a well-recognized
and debilitating symptom of Parkinson’s disease (PD).
Degradation in the cortical cholinergic system is thought
to be a key contributor. Both postmortem and in vivo
cholinergic positron emission tomography (PET) studies
have provided valuable evidence of cholinergic system
changes in PD, which are pronounced in PD dementia
(PDD). A growing body of literature has employed mag-
netic resonance imaging (MRI), a noninvasive, more
cost-effective alternative to PET, to examine cholinergic
system structural changes in PD. This review provides a
comprehensive discussion of the methodologies and
findings of studies that have focused on the relationship
between cholinergic basal forebrain (cBF) integrity, based
on T1- and diffusion-weighted MRI, and cognitive func-
tion in PD. Nucleus basalis of Meynert (Ch4) volume has
been consistently reduced in cognitively impaired PD
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samples and has shown potential utility as a prognostic
indicator for future cognitive decline. However, the extent
of structural changes in Ch4, especially in early stages of
cognitive decline in PD, remains unclear. In addition,
evidence for structural change in anterior cBF regions in
PD has not been well established. This review under-
scores the importance of continued cross-sectional
and longitudinal research to elucidate the role of cho-
linergic dysfunction in the cognitive manifestations
of PD. © 2024 The Author(s). Movement Disorders
published by Wiley Periodicals LLC on behalf of Inter-
national Parkinson and Movement Disorder Society.
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Nonmotor symptoms in Parkinson’s disease (PD) are
an integral part of the disease process.'” Changes in
olfaction, sleep, neuropsychiatric symptoms, and espe-
cially cognitive impairment are prevalent manifestations.
Cognitive decline often progresses to formal dementia
(PD dementia [PDD]) in most long-term patients and
thereby has a significant negative effect on patients’ qual-
ity of life.* Cognitive decline may reflect a diversity of
neurobiological changes.” However, a common theme in
recent literature is a focus on the integrity of brain cholin-
ergic systems and cognition in PD.%® Early investigations
using postmortem analyses noted fewer cholinergic peri-
karya in the cholinergic basal forebrain (cBF) of patients
with PDD.”'? This association was supported by in vivo
evidence from positron emission tomography (PET) of
cholinergic function changes in PD."*® Structural mag-
netic resonance imaging (MRI) is more accessible than
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functional PET and has the benefit of allowing for obser-
vation of longitudinal changes not possible with postmor-
tem structural analysis. This review summarizes the
burgeoning literature on the structural integrity of the cBF
in PD, beyond an earlier summary of six studies provided
by Pasquini et al.'"” We explicitly focus on MRI studies
that investigated the association between cBF integrity
and cognition in PD. For context, we first outline the neu-
roanatomical structure of the ¢cBF and its projections, and
summarize the postmortem evidence of ¢BF changes in
PD and in vivo cholinergic PET studies in PD.

cBF Structure and Projections

Situated inferior to the anterior commissure and pre-
dominantly anterior to the striatum, the human basal fore-
brain comprises four diffuse cell clusters (Fig. 1).2'2
Cholinergic neurons within these clusters, described by the
widely adopted “Ch” nomenclature, reflect diverse func-
tional autonomy because of their different patterns of neu-
ral connectivity.”"*>*” The Ch1 cluster resides within the
medial septum, and Ch2 within the vertical limb of the
diagonal band of Broca (DBB; vIDBB) rostral to the ante-
rior commissure. Ch1 and Ch2 project to the hippocam-
pus, most densely to the CA2 subregion, via the
precommissural fornix.”®3! Ch3, which lies within the
horizontal limb of the DBB (hIDBB), projects primarily to
the olfactory bulb.?'*° Ch4 is the largest cluster and is
regarded as synonymous with the nucleus basalis of
Meynert (NBM), which has been the primary focus of
most studies on the cBF. The significance of this focus is
that Ch4 provides cholinergic input to the entire human
cortical mantle (Fig. 2) and amygdala.?!**3%-323¢37 Nota-
bly, the NBM can be further segmented into anterior,
intermediate, and posterior divisions (Fig. 1). The axonal
branches of individual NBM neurons project extensively.
Extrapolation from studies in mice suggests that the axo-
nal territory of individual NBM cholinergic neurons may
cover a length of 100 meters, and that the total cholinergic
axonal projections from the human NBM may cover
1000 kilometers.>® These NBM projections travel in dis-
crete organized bundles following three primary pathways
(Fig. 2).>* Ninety percent of neurons in the NBM have
been estimated to be cholinergic, in contrast with 70% in
the vIDBB, only 10% in the medial septum, and 1% to
2% in the hIDBB.*° In vivo MRI assessment of the basal
forebrain may therefore reflect more than changes related
to cholinergic neuronal integrity, most especially when
regions other than the NBM are assessed.

Postmortem Evidence of cBF
Degeneration in PD

Cholinergic neurons can be easily delineated in histolog-
ical sections, given their large size.” Using postmortem

histological analysis on human brain tissue, several studies
have found cholinergic neuron degeneration in PD.** The
level of degeneration varies across the cell clusters of
the cBF, with evidence suggesting a posterior—anterior
pattern of degeneration across the whole ¢BF in PD, as
has been found in Alzheimer’s disease.”'®?%3” As such,
Ch4 perikarya may be preferentially impacted relative to
the anterior ¢BF regions (Ch1, Ch2, Ch3) in PD.

In the Ch4 region, modest cell loss has been recorded in
patients with PD without dementia, with more pronounced
cholinergic cell loss in patients with PDD.”"%** These
findings support the inference that Ch4 integrity is reduced
in PDD but remains largely unaltered in PD with normal
cognition (Fig. 3). No histological studies have differenti-
ated PD patients experiencing some cognitive impairment,
but not yet reaching a diagnosis of dementia. As such, the
timing and extent of cell loss in patients with PD with mild
cognitive impairment (PD-MCI) remain unclear.

The structural integrity of cholinergic projection
pathways and/or cholinergic functional integrity may
play a more important role than Ch4 cell loss in cogni-
tive impairment in PD. This hypothesis is supported by
postmortem evidence of an association of cortical cho-
linergic function, measured with acetylcholinesterase
(AChE) histochemistry, with cognitive impairment'®
and by evidence that cholinergic axon degeneration,
assessed using choline acetyltransferase (ChAT) immu-
nohistochemistry, precedes cholinergic cell loss.*

Histological evidence of pathology in the Ch1l and
Ch2 regions in PDD has been inconsistent, with one
study reporting decreased cholinergic neuron count and
another finding no significant differences when com-
pared with control samples.”®* No evidence for
reduced neuron counts in patients with PD with normal
cognition or MCI (PD-MCI) has been found in these cell
clusters.*****” Given the high proportion of cholinergic
neurons in the Ch2 region (approximately 70%) and the
prominence of afferent and efferent connections with the
hippocampus, further research into this cell cluster is
warranted.?®3!

In Vivo Evidence of Cholinergic
Functional Activity Changes in PD

PET has been used to assess cholinergic function from
the perspective of acetylcholine enzyme, receptor, and
transporter activity, significantly advancing our under-
standing of cholinergic dysfunction. In PD, PET assess-
ment has shown brain-wide cholinergic system alterations,
which illustrate downstream cortical and subcortical dys-
function that may be related to neuropathology in the
¢BF and/or cholinergic axon terminals.®'?1¢#81 For
example, even PD without dementia has been associated
with reductions in vesicular acetylcholine transporter
(VAChT) and AChE activity in cortical regions.**%>2
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FIG. 1. Cholinergic basal forebrain (cBF) position and structure. (a, b) In vivo cholinergic basal forebrain atlas, as defined by Kilimann et al.,'®
displayed here on Montreal Neurological Institute (MNI) 152 template brain. cBF regions: cyan, Ch1-2; yellow, Ch3; blue, lateral extension of
anterior Ch4; red, anterior and intermediate Ch4; green, posterior Ch4. (c) A computer-assisted three-dimensional reconstruction of Ch clusters
of the basal forebrain after gallocyanin staining postmortem is shown: green, Ch2; yellow, Ch3; gray, anteromedial-anterolateral Ch4;
red, intermediate Ch4; black, posterior Ch4; pink, juxta-commissural cells. Ch1 is not shown. (Reproduced from Grinberg and Heinsen'® CC BY
4.0 DEED.) (d-f) Postmortem formalin-fixed, paraffin-embedded nucleus basalis of Meynert (NBM) sections stained with choline
acetyltransferase (ChAT) immunohistochemistry and arranged rostrally to caudally starting from the most caudal aspect of the anterior commis-
sure. Cholinergic neurons are shown in the anterior (d), intermediate (e), and posterior (f) divisions of the NBM. (Reproduced from Liu et al.?° CC

BY.) [Color figure can be viewed at wileyonlinelibrary.com]

In PDD, these reductions appear to be both more
prominent and more widespread, consistent with
postmortem evidence.'®*® Conversely, in patients with
early PD without cognitive deficits, cholinergic
upregulation has been observed in cerebellar and fron-
tal cortical regions and some subcortical structures,
including the hippocampus.*?>3354

Differential cholinergic innervation patterns appear to
distinguish patients with PD from control participants
before the onset of dementia. Cholinergic innervation
deficits may be more pronounced in the 7% to 12% of
patients with PD with a heterozygous GBA1 mutation,’
the most prevalent genetic risk factor for PD.’” In addi-
tion, cholinergic changes may be driving deficits in spe-
cific cognitive domains in PD, with Crowley et al’°

describing, in a sample of PD patients with varying
cognition, an association between VAChT activity in all
cortical regions and attention and working memory,
executive function, and immediate and delayed memory,
but not visuospatial function or language. van der
Zee et al’>’ using assessment of covarying VAChT
uptake, identified PD-specific cholinergic vulnerability in
the centro-cinulate network,’® a part of a broader
cingulo-insular network that recent functional MRI
(fMRI) evidence has indicated is a nexus for cortical
cholinergic activity during attentionally demanding
tasks.’”® In addition, right superior parietal lobe-Ch4
functional connectivity activity, assessed using resting-
state fMRI, has been positively correlated with cognitive
assessment results in PD with a moderate effect.®!
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FIG. 2. Pathways connecting the nucleus basalis of Meynert (NBM)
and the cortex. (@) The main cholinergic pathways in the left hemi-
sphere based on observations by Selden et al®®> and Hong and
Jang.®® Green, medial cholinergic pathway; red, capsular division of
the lateral cholinergic pathway; yellow, perisylvian division of the lat-
eral cholinergic pathway; A, amygdala; AC, anterior commissure (lat-
eral aspect); C, caudate; Cg, cingulate gyrus; F, frontal lobe (medial
surface); GPi, globus pallidus (internus); IN, insular cortex;
NBM, nucleus basalis of Meynert; Oc, occipital lobe (medial surface);
OF, orbitofrontal cortex; P, putamen; Pr, parietal lobe (medial sur-
face). The coronal section is presented approximately 6 mm posterior
to the midpoint of the anterior commissure. (Reprinted from Neuro-
science and Biobehavioral Reviews, 37(10), Gratwicke, J., Kahan, J.,
Zrinzo, L., Hariz, M., Limousin, P., Foltynie, T., Jahanshahi, M., The
nucleus basalis of Meynert: A new target for deep brain stimulation in
dementia? pp. 2676-2688, Copyright (2013), with permission from
Elsevier.) (b) Tracks from the right NBM,'® to all right hemisphere corti-
cal regions,* modeled using probabilistic diffusion tractography (via con-
strained spherical deconvolution [MRtrix3%°)). Colors indicate fiber
orientation: red, left-right; blue, superior  (sup.)-inferior (inf.);
green, anterior (ant.-posterior (post.). Med., medial. [Color figure can be
viewed at wileyonlinelibrary.com]

In Vivo MRI Evidence of Basal
Forebrain Degeneration in PD

Although PET provides an opportunity to investigate
cholinergic function in PD, PET is not widely available,
is costly, and involves radiation exposure. MRI, in con-
trast, is noninvasive, generally more affordable, and
more widely available. In addition, examination of
structural cholinergic system changes will help clarify

the relationship between progressive system changes
in ¢BF regions and advancing cognitive decline
in PD. Employing different imaging modalities, MRI
can provide evidence of variations in ¢BF macrostruc-
ture, that is, changes in gray matter volume or intra-
axonal cross-sectional area and microstructure changes
to tissue components.

Accurate in vivo ¢BF definition is required to maximize
the utility and validity of MRI-derived structural metrics.
Several atlases have been created to delineate the cBF and
its components for in vivo assessment.'®*°® Different
atlases vary in their treatment of cBF regions, ranging from
representing the cBF as a single region®® to segmenting
the cBF into as many as five subregions'® (Fig. 4b). Most
follow the Mesulam nomenclature.”!

Four atlases have been used to define the ¢BF in PD
research (Fig. 4). Two have predominated: the multiregion
SPM Anatomy Toolbox atlas®*®”*’ (Fig. 4a), which
defines two regions (Ch1-2-3 and Ch4); and an atlas
developed by Kilimann et al'® (Fig. 4b), which includes
five cell clusters (Ch1-2, Ch3, and three subregions
of Ch4).

Limitations of MRI

Although the utilization of in vivo assessment of cBF
structural integrity holds significant potential, it is impor-
tant to acknowledge the challenge and limitations of accu-
rately delineating the small, diffuse cell clusters of the ¢cBF
with MRI. Magnetic field strength (eg, 3 or 7 T) can affect
spatial resolution of the underlying imaging data and will
have an influence on the creation of different cBF atlases.
In addition to the influence of atlas selection outlined ear-
lier, further considerations include probabilistic thresholds
applied to delineate cBF structures; thresholding a proba-
bilistic atlas at 0.3 or 0.5 will obviously affect the volume
of the resulting regions of interest. Furthermore, specific
image preprocessing decisions—for example, selection of
processing software, segmentation options, nonlinear
warping algorithm—can also influence the volume of the
¢BF and cBF subregions obtained.”® These challenges are
further confounded by an inability to confirm accurate
in vivo atlas placement because of the lack of contrast
between subcortical regions in MRI data acquired using
commonly adopted protocols.

Although great care has been taken in the generation
of the different cBF atlases, a fundamental mismatch
in spatial resolution exists between typical clinical MRI
resolution (~mm) and gold standard histology
(~micron), suggesting an additional source of multiple
processing steps (and potential noise) when registering
these two types of datasets for atlas generation and
labeling. The demographics of a population used in an
atlas generation process also needs to be considered.
Given ¢BF volume reduces with age, atlases derived
from young, healthy individuals may not provide the
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FIG. 3. Summary of postmortem histological evidence and anticipated changes in PD with mild cognitive impairment (PD-MCI) of Ch4 neuron and
|.44

projection integrity in PD. Adapted from Pepeu et a

FIG. 4. Representations of cholinergic basal forebrain atlases in a multi-
planar view of the Montreal Neurological Institute (MNI) 2009c asymmetric
template (y =5 mm; z= —25mm). (@) As defined in the SPM Anatomy
Toolbox®%7-6%:  green, Ch1-2-3; blue, Ch4. (b) As defined by Kilimann
et al'® green, Ch1-2; blue, Ch3; red, Ch4. (c) Purple, Ch1-2; cyan, Ch3-4.
(Reproduced from Gargouri et al.® CC BY 4.0 DEED.) (d) As defined by Fritz
et al®®; cholinergic basal forebrain as one region (orange). [Color figure can
be viewed at wileyonlinelibrary.com]

most appropriate canvas in which to study the ¢BF in
neurodegeneration.

Although powerful, atlas selection and decisions made
during preprocessing should be borne in mind when eval-
uating published results of ¢BF structural changes.

Summary of In Vivo Evidence

Recent studies that have used MRI to assess cBF
structure with at least one measure of cognition are

Created with BioRender. [Color figure can be viewed at wileyonlinelibrary.com]

summarized in Table 1. These studies have included PD
patients with a range of disease durations and cognitive
abilities. Most have included a measure of general cog-
nition, for example, the Montreal Cognitive Assessment
(MoCA) or Mini Mental State Examination (MMSE);
others have included more comprehensive neuropsycho-
logical testing. Many have focused on macrostructural
changes in specific cBF regions. We have grouped the
studies in Table 1 by PD sample size given larger sam-
ple sizes may provide a better representation of the
effects of PD. Within each sample size, group studies
have been ordered alphabetically.

Posterior Basal Forebrain (Ch4)
Macrostructural Change

Macrostructural change in the posterior ¢BF (Ch4)
region has been the primary focus of investigations into
cBF changes in PD. Cross-sectional studies suggest
that Ch4 volume is reduced in cognitively impaired
PD patients (PD-CI) when compared with a control
sample.”®%%#8 However, this reduction has not been con-
sistently observed when the PD-CI sample was small
(n =139, or when the PD sample was not stratified
by cognitive impairment.®’>"17%76:77-80.81.87.90.95.97 \grhere
a cognitively normal PD sample has been compared with
a control sample, most studies report preserved Ch4
volume,®!76-77:80:86.90.97 Ty - comparing a PD-CI group
with an unimpaired PD group, the majority of studies
have not observed a significant Ch4 volume reduction;
however, trends for lower volume in the cognitively
impaired group have been noted.”®*®*%%° Where a
reduction in volume has been reported in a PD-CI group,
compared with an unimpaired PD group, the effect was
often small, even with larger sample sizes (Cohen’s d
[PD-N—PD-CI] = 0.3277). The variability in finding vol-
ume reduction in PD-CI may be attributable to the broad
spectrum of cognitive abilities within cognitively
impaired patient groups, ranging from mild to severe
impairment. A larger sample does not appear to
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correlate with the likelihood of finding reduced Ch4
volume in PD (eg, Grothe et al”* and Zhou et al”®).

Significant associations of Ch4 volume with continu-
ous measures of cognition have been reported by several
studies. These include positive associations with general
measures of cognition, such as the MoCA,”*#%% and
with assessments of specific domains, including visuospa-
tial function (eg, Benton Judgement of Line Orientation
Test,”"** overlapping figure identification test®), atten-
tion (various tests including Trail Making Part A, Sym-
bol Digit Modalities Test’!), and memory (California
Verbal Learning Test®?). However, given there was con-
siderable variance in the effect sizes of the associations
reported and given a number of other studies have
assessed for, but not found, significant associations with
specific cognitive tests or with specific cognitive
domains,®*%% analysis of the existing literature does
not yield sufficient evidence to stipulate which cognitive
domains are associated with cholinergic system disrup-
tion in PD and how significant the effect of these
associations are.

Patients with PDD have been included as an exclusive
group in only one MRI study.*® Consistent with post-
mortem evidence, Pereira et al®® found reduced Ch4
volume in patients with PDD when compared with
both control participants and nonimpaired PD patients.

Differential degradation across Ch4 subregions has
received little attention. Posterior Ch4 (Ch4p) volume
changes reported by Ray et al’® and Rea et al”® mirror
results for whole Ch4 volume differences between con-
trol and PD-CI participants. Additional assessment is
required to determine the extent to which subregional
degradation is occurring in PD.

Table 2 summarizes the nine studies that have exam-
ined longitudinal changes in the ¢BF in PD and associa-
tions with cognition. Additional information on these
studies is provided in Table 1. Two approaches have
been used to assess Ch4 volume changes in relation to
cognitive impairment over time: use of baseline Ch4 vol-
ume in relation to future cognition, and repeated assess-
ment of Ch4 volume. Both approaches have provided
evidence of reduced Ch4 volume being associated with
cognitive decline. Most studies have assessed future cog-
nition in relation to baseline Ch4 volume.”®”%838
Using Parkinson’s Progression Markers Initiative (PPMI)
data, this approach has provided evidence of baseline
Ch4 volume predicting MoCA score after 2 to 4 years in
de novo or newly diagnosed patients.”®** In addition,
differences in general cognition between those with and
without reduced baseline integrity after 3 to 5 years have
been reported in both PPMI data’”” and novel data.”® In
contrast, longitudinal investigation of Ch4 volume has
been limited.”>** Using this approach with novel data,
Pereira et al®® did report that greater reductions in Ch4
volume increased the risk of developing dementia over
10 years in PD.

Posterior Basal Forebrain (Ch4) Microstructural
Change

Microstructural integrity can be inferred from diffusion-
weighted MRI metrics to assess the structural integrity of
tissue components. Although much less commonly investi-
gated than macrostructural changes, increased mean and
axial diffusivity in Ch4 have been reported in PD-CI
patient samples with medium-sized effects (Cohen’s d [PD-
N—PD-CI] = —0.65 to —0.66).””%¢ Other studies suggest
evidence of both increased diffusivity and free water,
which is an indication of isotopically unrestricted extracel-
lular water potentially related to neuronal loss and neu-
roinflammation, has been associated with lower cognitive
scores in PD.*%7?%¢ An association with changes in frac-
tional anisotropy in Ch4 has not been observed.®®””7%58¢
Through longitudinal assessment, mean diffusivity in Ch4
has demonstrated potential as an indicator of future cogni-
tive impairment.””

Anterior Basal Forebrain (Ch1-2 and Ch3)
Macrostructural and Microstructural Change

In cross-sectional studies, there is no evidence for a sig-
nificant reduction in anterior cBF (Ch1-2-3) volume in
PD, and no associations with cognitive assessment scores
have been reported.®!76-8%-86:20:93:9 Yhere Ch4 volume
reductions have been reported, corresponding analysis of
anterior cBF regions has shown no reductions.”®:0:8%%
Only one study, in a PD sample with no or minimal cog-
nitive impairment (MMSE > 24), reported worse Ch1-2
microstructural integrity, which was based on evidence
of increased mean, axial, and radial diffusivity in these
regions.®

When assessed over 10 years, patients with PDD and
PDD-converters had greater Ch1-2 atrophy compared
with patients with PD whose cognitive impairment
remained stable.®” However, anterior cBF degeneration
has not been seen longitudinally in PD patients without
cognitive impairment.”®%? The Ch3 region, encompassed
in the hIDBB, has been assessed only when included with
the Ch1 and Ch2 regions.”®

Structural Assessment of cBF
Projections in PD

Any reduction in the structural integrity of axonal pro-
jections from cBF neurons will have a considerable
impact on the maintenance of normal cholinergic system
function (Fig. 3). A more detailed examination of cBF
axonal projections is now possible with the application
of advanced diffusion tractography methods. Studies on
normal aging and in Alzheimer’s disease indicate initial
cholinergic system degradation may preferentially occur
in these axonal projections rather than in the cBF cell
clusters.*>'%1-192 Moreover, the structural integrity of
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TABLE 2 Longitudinal studies on cholinergic basal forebrain integrity and cognition in Parkinson’s disease

Baseline Sample Description

Author, Year

Summary of Longitudinal Results

Barrett et al, 2021*% 97 PD (MoCA > 25)

Ch4 volume was significantly correlated with rate of change in MoCA score after 4 years of follow-

up, but not Ch1-2-3 volume
13 HGs, 13 LRRK2-UC, 31 LRRK2-PD, 31 de novo iPD

Batzu et al, 2023%*

After 2- and 4-year follow-up, iPD group cBF volume predicted changes in global cognition,
memory, and executive function, but this effect was not seen for LRRK2-UC or LRRK2-PD
groups. In addition, ¢BF volume was a significant mediator of differential longitudinal changes in
memory and global cognition (MoCA) over 4 years between LRRK2-PD and iPD groups

Gang et al, 2020*

13 HCs, 36 without baseline NBM atrophy, 20 with baseline NBM atrophy

Significant differences in MMSE and visuoperceptual assessment between PD with and without NBM

atrophy after 3 years

Labrador-Espinosa et al, 56 HCs, 162 de novo PD

2023;175

Four-year follow-up: cBF volume significantly reduced in PD patients, but not in HCs

Pereira et al, 2020%°

42 HCs, 86 PD-stable, 20 PDD-converters, 19 PDD

PD patients with greater Ch4 atrophy over time were at greater risk of developing dementia over

10 years. PDD-converters and PDD patients had greater Ch1-2 atrophy over time compared with
PD-stable patients and control subjects

Ray et al, 2018%7° 76 HCs, 168 de novo PD

In PD, Ch4 and Ch4p volumes were significant predictors of MoCA score after 3 years. Smaller than

expected (from control range) Ch4 volume independently increased risk of MCI or PDD diagnosis
for those without suspected MCI (n = 112) at baseline.

Ray et al, 2023% 40 HCs, 96 PD

Baseline Ch4 volume associated with change in MoCA, an executive function measure and memory

measures, baseline Ch4 FWF associated with change in MMSE and an attention measure, baseline
Ch4 cAD with change in an attention measure, baseline Ch1-2 volume associated with change in
MMSE, executive function, memory and attention measures, and baseline Ch1-2 FWF with an

executive function and an attention measure at 4.5 years

Schulz et al, 20187

167 HCs, 304 de novo PD (232 PD-N, 72 PD-MCI)

In PD, baseline Ch4 volume and MD were significant predictors of cognitive impairment at 3-year

follow-up
Zhou et al, 20237%

119 HCs, 216 PD (114 subtype 1, 102 subtype 2)

Similar progression of cognitive impairment between the two subtypes over 5-year follow-up (subtype
2 had significantly worse cognition and significantly higher FWF at baseline)

Studies have been ordered alphabetically.
*Study used Parkinson’s Progression Markers Initiative data.

Abbreviations: PD, Parkinson’s disease; MoCA, Montreal Cognitive Assessment; HC, healthy control; LRRK2-UC, LRRK?2 unaffected carriers; iPD, idiopathic Parkinson’s dis-
ease; cBF, cholinergic basal forebrain; NBM, nucleus basalis of Meynert; MMSE, Mini Mental State Examination; PDD, Parkinson’s disease dementia; MCI, mild cognitive
impairment; cAD, free water corrected axial diffusivity; FWF, free water fraction; PD-N, Parkinson’s disease with normal cognition; PD-MCI, Parkinson’s disease with mild cog-

nitive impairment; MD, mean diffusivity.

cBF projections appear to be more strongly associated
with cognitive function than are structural changes
within the ¢BF.'0%104

Five studies have considered the integrity of projections
from Ch4 in PD. Hepp et al'® and Nazmuddin et al'%®
both examined medial and lateral cholinergic pathways
from Ch4 using seed regions of interest.***>'%” They
reported worse projection integrity in PD patients with

postural instability and gait disorder subtype than in con-
trol participants'®® and in PD patients experiencing visual
hallucinations.'®® However, neither study assessed cogni-
tion. Crockett et al'®® examined the association between
medial and lateral tracts from Ch4 and cognitive func-
tion in a sample of 37 PD patients and found those
who converted to PD-MCI at 1-year follow-up (n = 16)
had worse baseline mean diffusivity in both tracts.
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In addition, significant associations were found with
some cognitive measures, but these did not survive correc-
tion for multiple comparisons. Wu et al* found that the
free water fraction (FWF) increased in fiber tracts con-
necting the ¢BF to the occipital, parietal, and prefrontal
cortices in 84 PD participants compared with controls,
but FWF was not increased in projections to the limbic,
sensorimotor, temporal, and peri-insular cortices. Interest-
ingly, none of these FWF increases were associated with
cognitive measures. In addition, Gargouri et al®® consid-
ered the density of fiber tracts, a measure of the probabil-
ity of fiber tracts connecting two regions, from Ch3-4 to
various cortical regions. They reported a decreased proba-
bility of tract density in the tracts connecting Ch3-4 with
the associative prefrontal, occipital, and peri-insular corti-
ces in PD. Connection density in the tract connecting with
the prefrontal cortex was positively associated with gen-
eral cognitive (MMSE) scores.

Discussion

The contribution of the ¢BF to cognitive impairment in
PD may be more nuanced than often anticipated, especially
in the initial stage of cognitive decline. Structural choliner-
gic integrity may depend on several factors, including func-
tional cholinergic changes, structural or functional changes
affecting adjacent neuromodulatory functions, and
resulting, potentially highly intricate, brain system- and
network-level alterations. The strongest evidence, provided
by reduced cortical AChE and VChAT activity measured
using PET, has been for functional cholinergic changes in
PD,*>% which appear to be widespread in PDD.'®*®
Emerging work indicates an association between ¢BF struc-
tural integrity and neocortical cholinergic innervation, with
evidence of a relation with Ch4 volume, but not anterior
¢BF volume, in PD patients without dementia,*>”* with
whole ¢BF FWEF,*® and with Ch4p volume.®' Further
investigation of associations between ¢BF structural integ-
rity, cortical cholinergic activity, and cognitive function will
greatly enhance our understanding of how structural and
functional cholinergic system changes develop as cognitive
impairment progresses in PD. Alterations to brainstem
cholinergic  structures, the pedunculopontine and
laterodorsal tegmental nuclei, and projections from these
nuclei, especially those to multiple regions of the thala-
mus and all basal ganglia components, are also likely to
be contributing.'?”'!!

The heterogeneity of cholinergic alterations across
subgroups of patients with PD deserves further atten-
tion. A distinct cholinergic phenotype may exist,
potentially distinguishing those with MCI who progress
to dementia.””'”""'? Features of PD that are refractory
to dopaminergic therapy are often able to be attributed
to cholinergic function, indicating the hypothesis of cho-
linergic involvement in cognitive impairment in PD is

well founded.®'®” However, although acetylcholine
is prospectively the primary neurotransmitter modulating
cognitive function in the majority of the cerebral cortex
and is implicated in impairment in all cognitive domains
in PDD, dopaminergic and noradrenergic input to the
prefrontal cortex has been proposed to predominate modu-
lation that affects executive function.'™® As such, investiga-
tion of structural changes associated with cognitive
impairment in PD would likely benefit from a network-level
approach rather than consideration of a single neurotrans-
mitter system.''® In addition, evidence suggests the extent
of cholinergic system involvement in PD may be influenced
by genetic risk factors, with changes more prevalent in
patients presenting with a GBA1 mutation than those with
idiopathic PD or a LRRK2 mutation.''* It is also important
to bear in mind disease-related pathology is occurring
alongside age-related changes, and the disentanglement of
the effect of each is a notable limitation in the investigation
of any neurotransmitter or network involvement in PD-
related cognitive impairment,**!15-116

Although there are several limitations in using MRI to
assess cBF structural integrity in vivo, perhaps the most
significant is the spatial resolution of most available imag-
ing data. Prospective use of higher-field-strength MRI will
offer greater resolution, better definition, and allow for
improved accuracy of ¢BF atlas placement. This offers
hope for improved precision of in vivo ¢BF structural
integrity measurement in the future.'!”

Clinical Implications

Identification of cortical cholinergic system structural
changes that consistently associate with PD-related cognitive
impairment has the potential to inform diagnosis and prog-
nosis, and allow for individualized targeting of treatment.
In vivo assessment of ¢cBF volume using MRI may provide
the most accessible method of identifying such changes.
Treatment may be most effective before extensive degrada-
tion of ¢BF structures has occurred, highlighting a need for
an accessible clinical pathway for identifying changes.

Direct deep brain stimulation (DBS) of the NBM has
shown potential therapeutic benefit for those with PDD,
although with considerable variability.''®'"” However,
evidence suggests NBM volume is a strong predictor of
the efficacy of subthalamic nucleus DBS,"*° an established
treatment for motor symptoms in PD that may have a
neuroprotective effect.'?!'%3 In addition, cholinomimetics
may have some efficacy before PD-MCI where ¢BF struc-
tural changes can be identified, but before widespread
structural changes have occurred.'?*15

Conclusions

Evaluation of the contribution of cBF structural
integrity to cognitive impairment in PD has seen
increasing attention. Postmortem histological analysis
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and cholinergic PET indicate loss of Ch4 neurons and
increased cortical cholinergic denervation in PDD.
Cross-sectional in vivo antemortem evidence suggests
an effect of reduced Ch4 volume, but not anterior
¢BF volume, in PD-CI patients, when compared with
unimpaired patients. Longitudinal in vivo assessment
has indicated Ch4 volume may be a predictor of future
decline.

A more comprehensive understanding of the rela-
tionship between cholinergic system degeneration and
regression of cognitive ability in PD is needed. This
may derive from opportunities to evaluate ¢cBF pro-
jection axons, elucidate differential Ch4 subregional
involvement, and further investigate longitudinal
effects of reduced ¢BF integrity, alongside investiga-
tion of functional cholinergic system changes.®'%¢ In
addition, although there is no clear evidence of bene-
fit before dementia in PD, the prospective utility of
cholinomimetics in amelioration of cholinergic func-
tion highlights the potential utility of accessible
in vivo biomarkers. Such biomarkers may be crucial
for accurate targeting of cholinomimetic treatments
for cognitive impairment in PD. @
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